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Abstract

We propose the debt-equity spread (DES), the difference between the actual
and equity-implied credit spreads, as a measure of the valuation gap between
debt and equity at the firm and bond level. DES strongly predicts stock and
bond returns in opposite directions. A strategy that takes a long position in
firms with low DES (indicating that stocks are cheap relative to bonds) and
a short position in those with high DES generates an average stock return
of 7.72% and bond return of —4.97% per annum. The return predictability
is consistently significant over subsamples and is stronger among smaller,
less liquid, and more difficult-to-short stocks and bonds. In addition, firms
with higher DES tend to have more negative revisions in long-term growth
forecasts, issue equity and retire debt more aggressively, and their insiders
are more likely to sell their stocks. Together, these findings support DES
being a measure of relative mispricing between debt and equity.
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1 Introduction

In standard asset pricing models, a firm’s equity and debt should be priced consistently under
the principle of no arbitrage, as both are contingent claims on the same underlying asset (see
the seminal work of Merton, 1974). However, due to market segmentation and other frictions,
the equity and debt of the same firm could be subject to misvaluation at different degrees,
resulting in a valuation gap. Moreover, if the relative mispricing is persistent, it could have

important implications for investors and firm managers.

In this study, we propose a simple measure of the firm-level valuation gap between debt
and equity and study its implications for stock and bond returns, as well as corporate decisions.

Our measure, the debt-equity spread (DES), is the difference between two credit spreads:
DES = actual credit spread — equity-implied credit spread,

where the equity-implied credit spread is computed using an industry standard CreditGrades
model which we have extended to take into account the heterogeneity in firm payouts. When
a firm’s equity is valued high relative to its debt, the equity-implied credit spread tends
to be low relative to the actual bond spread, giving rise to a higher DES. In contrast, low
equity valuation relative to debt results in a low DES. The DES measure thus integrates the

information from both bond and equity markets.

Converting equity value to a credit spread facilitates the comparison between equity
and debt valuations. It is similar to comparing option valuations at different maturities or
strikes by converting option price into an implied volatility, and like implied volatility, this
conversion is model-dependent. While a more sophisticated structural model could potentially
reduce the concern for model misspecification, we choose the CreditGrades model because of
its simplicity (similar to the common choice of Black-Scholes implied volatility) and wide
application in the industry.! The standard CreditGrades model is based on Black and Cox
(1976) and adds an additional feature of uncertain default boundary to address the difficulties
of diffusion-based models in pricing shorter-maturity debt. The key inputs include market
value of equity, financial leverage, stock return volatility, and bond-level information (e.g.,
coupon schedule and maturity). An added input in our extended CreditGrades model is the

expected firm payout ratio.?

!The CreditGrades model was developed by RiskMetrics, JP Morgan, Goldman Sachs, and Deutsche Bank.
See Finger et al. (2002).

2In order to obtain an approximate solution, the original CreditGrades model restricts the firm value to
have zero expected growth under the risk-neutral measure. We also derive an exact close-form solution for
our extended model.



We study the predictive power of DES for the cross section of stock and bond returns
in the US market from January 1980 to December 2020. While DES negatively predicts
the cross section of stock returns, it positively predicts the cross section of corporate bond
returns. When sorting stocks into quintiles based on firm-level DES, we find that stocks in
the high-DES quintile have an average value-weighted return of 4.57% per year, compared to
12.29% for those in the low-DES quintile. The average return spread between them is 7.72%
per year, with a ¢-statistic of 4.29 (the average equal-weighted annual excess return is 7.93%,
with a t-statistic of 4.33). At the same time, bonds in the high-DES quintile outperform those
in the low-DES quintile by 4.97% per year (with a t-statistic of 5.41) for the value-weighted
portfolios and 6.35% per year (with a t-statistic of 6.37) for the equal-weighted portfolios.
These results are robust to various controls of standard factors as well as firm, equity, and

bond characteristics.

The opposite directions in the stock and bond return predictability of DES is consistent
with it capturing the relative mispricing between equity and debt. It presents a challenge for
a set of standard risk-based explanations which feature risk factors that the stock and bonds
of the same firm are exposed to in the same direction. We test several possible risk-based
explanations that can plausibly generate risk exposures for stocks and bonds in opposite
directions, including 1) systematic volatility shocks (both realized and implied), 2) shocks
to a common component of idiosyncratic volatility (Herskovic et al., 2016), 3) aggregate
jump risk, 4) investment-specific technology shocks (Kogan and Papanikolaou, 2014), and 5)
variation in government bond yield. The time series regression tests show that the DES bond

and stock return spreads are unlikely to be driven by these risk factors.

To further distinguish between the mispricing vs. risk-based explanation, we examine

three additional results.

First, we examine the relation between DES and analysts’ long-term earnings growth
forecasts, which likely have a bigger impact on the pricing of stocks than bonds. Contem-
poraneously, high-DES stocks tend to have higher long-term growth than low-DES stocks.
Furthermore, DES negatively predicts changes in earnings growth forecasts from year 2
through year 5, indicating that analysts are more likely to be disappointed by high-DES

stocks and make negative forecast revisions in the subsequent years.

Second, mispricing is likely to be more pronounced and persistent among securities that
face more severe limits to arbitrage. For this reason, we examine the relation between DES
return predictability and a variety of proxies for limits to arbitrage. DES stock return spreads
are substantially stronger among stocks that (1) have lower market capitalization, (2) are

less liquid (based on dollar volume and the measure of Amihud, 2002), (3) have lower dollar



trading volume, (4) are more costly to short (based on equity lending fee), (5) are more risky
to short (based on days to cover), and (6) have wider analyst forecast dispersion. Similarly,
DES bond return spreads are stronger among bonds with smaller bond size, lower dollar
volume, lower number of trading days, larger Amihud illiquidity, and larger gamma (Bao et al.,
2011). Interestingly, we also find that the predictability of DES for stock returns is stronger
among firms that have more liquid bonds. This is consistent with bond prices of these firms
being less affected by the illiquidity premium and better captured by our structural model,
which in turn makes the DES measure more informative about stock misvaluation (rather

than being contaminated by model misspecification).

Third, if DES captures relative mispricing, corporations and their insiders are likely to
take advantage of the arbitrage opportunities. Consistent with high DES being associated
with relatively over-priced equity and under-priced debt, we find that high DES non-financial
firms simultaneously issue more equity and retire more debt. Our result is consistent with
the finding of Ma (2019) that net equity repurchases and net debt issuance both increase
when expected excess returns on debt are particularly low, or when expected excess returns
on equity are relatively high. Our DES measure has additional predictive power beyond
the stock- and bond-level measures used by Ma (2019), likely because it provides a direct
comparison between debt and equity valuations. Furthermore, we find that top executives of
high DES firms are more likely to sell their stocks in subsequent months than those of low
DES firms. These behaviors of corporate managers and insiders provide additional validations

for our measure of valuation gap between equity and debt markets.

Taken together, while it is difficult to completely rule out risk-based explanations, our
results suggest DES is more likely to be a measure of relative mispricing. Compared to other
mispricing measures in the literature, DES has its unique features. First, DES is economically
driven and exploits the difference in the valuation between equity and bond markets through
the lens of a structural model. Therefore, it complements measures of valuation ratios, which
rely on accounting variables such as book equity or earnings as the benchmark, or mispricing
score by Stambaugh et al. (2012), which is based on several well-documented anomalies in
the stock market. Second, to the extent that equity valuation is more sensitive to firms’
growth options and intangible assets while bond valuation is more sensitive to tangible assets
in place and downside risks, DES could capture “value” in a way that is more robust to the

critiques by Arnott et al. (2021) and Eisfeldt et al. (2020).

Related literature Our study contributes to the literature that examines the integration
between the equity and credit markets. Schaefer and Strebulaev (2008) demonstrate that
hedge ratios from the simple credit risk model of Merton (1974) are helpful in explaining the



co-movement between equity and bond returns, because the hedge ratio is not “contaminated”
by bond liquidity risk. Extending this line of research, Choi and Kim (2018) use hedge ratios
to examine the integration between the equity and bond markets in the cross section and find
mixed evidence across different asset pricing anomalies. Kapadia and Pu (2012) highlight
the importance of limits to arbitrage in understanding the disintegration between these two
markets. Culp et al. (2018) construct option-based credit spreads from S&P500 (SPX) index
put options and find a good deal of integration between corporate bond and option markets

at the aggregate level.?

Trading strategies that exploit relative mispricing between debt and equity are often
referred to as capital structure arbitrage, which had its hay days in the early 2000s. Such
strategies are most commonly implemented through equity and credit default swaps (CDS).
Yu (2006) is among the first to systematically examine the profitability of such strategies.
Using the CreditGrades model and the CDS sample with 261 firms from 2001 to 2004, he
finds that strategies that exploit the mispricing between equity and CDS entail significant
risks at firm level, while the portfolio level tests produce statistically insignificant excess
returns due to limited sample size. Duarte et al. (2007) find that the initial capital required
for a capital structure arbitrage strategy is several times higher than for other fixed-income
arbitrage strategies. Focusing on corporate bonds instead of CDS allows us to significantly
expand the sample both in the time series and cross section. By taking a long-short position
in DES quintiles, we find the capital structure arbitrage can achieve a better risk-return
tradeoff, which is discussed in more detail in Section 3.5. In addition, we separately examine

the predictability of stock and bond returns, as well as other corporate decisions.

Our paper contributes to the literature on mispricing and return predictions. Earlier
studies such as De Bondt and Thaler (1985), Lakonishok et al. (1994), and La Porta (1996)
find that investors may become excessively pessimistic about future earnings growth after
a series of bad earnings or other negative news, and these out-of-favor stocks are therefore
undervalued and their prices rises in subsequent periods. These studies use this extrapolative
bias to explain the long-term contrarian effect and the value premium. Baker and Wurgler

(2006) study how investor sentiment affects cross-sectional stock returns. Stambaugh et al.

3Related, Collin-Dufresn et al. (2001) examine the exploratory power of equity market variables on credit
spreads, while Koijen et al. (2017) show that bond factors are priced in equity returns. Other studies examine
the relation between equity and credit default swap (CDS) markets. Longstaff et al. (2005) examine the
lead-lag relation between equity, bond and CDS markets and find that the former two markets help to predict
corporate yield spread changes. Duarte et al. (2007) study the risk and return of popular fixed-income
arbitrage strategies. Friewald et al. (2014) estimate the distress risk premium implied by CDS markets and
find a positive relation between the distress risk premium and stock returns. By constructing optimal Sharpe
ratio portfolios that are consistent with no-arbitrage and trading frictions, Sandulescu (2021) documents a
non-trivial but not perfect integration between U.S. stock and corporate bond markets.



(2012) combine market-wide sentiment with short-sale impediments (Miller, 1977) and predict
that overpricing in asset prices should be more prevalent than underpricing, which can be
used to understand the behaviors of a broad set of anomalies in cross-sectional stock returns.
Complementary to Stambaugh et al. (2012) which extract equity overpricing information
from existing stock anomalies, our work proposes a mispricing measure that connects equity

and debt markets and documents its opposite signs in predicting equity and bond returns.*

Our work also adds to the extant literature on corporate security issues and investments.
Dong et al. (2012) adopt the discounted cash flows method to examine whether equity issuance
is driven by overvalued equity. Using the actual credit spread, term spread, and stock returns
separately from the equity and bond markets, Ma (2019) documents that non-financial firms
arbitrage across their own equity and bond. Our result shows a valuation gap measure
that integrates information from both markets has additional predictive power for firms’
cross-market arbitraging behaviors.

The paper proceeds as follows. In Section 2, we describe the construction of DES. In
Section 3, we study the implications of DES for the cross-sectional stock and bond returns.
We also attempt to differentiate the risk-based and mispricing interpretations of the return
predictability. In Section 4, we examine the relation between DES and future corporate

security issuance and insider trading. We conclude in Section 5.

2 Measuring the debt-equity spread

In this section, we present the CreditGrades model and describe how we construct the

debt-equity spread (DES) to assess the valuation gap between the equity and debt markets.

2.1 The extended CreditGrades model

The CreditGrades model is relatively transparent and easy to implement. Different from the
models in Cremers et al. (2008), Huang and Huang (2012), and Bai et al. (2020), which rely
on jumps to raise credit spreads, the standard CreditGrades model introduces uncertainty

about the default boundary.

Under the risk-neutral measure, the dynamics of the asset value, V;, of a solvent firm

4More broadly, this paper is related to the large and fast-growing literature on behavioral finance and
asset pricing. See Barberis and Thaler (2003), Hirshleifer (2001) and Barberis (2018) for excellent reviews on
this area.



evolve as follows:

dVi

7t = ('l" — 5)dt + O'th, (1)

where r is the risk-free rate, ¢ is the firm-level payout ratio, ¢ is asset volatility, and W is a
standard Brownian motion. While the standard CreditGrades model assumes a zero drift
under the risk-neutral measure, i.e., r = 9§, we allow for cross-sectional heterogeneity in the
payout ratio ¢, which further increases the average credit spread due to its convex relation
with default risks (Feldhiitter and Schaefer, 2018).

The total face value of the firm’s debt is D. Default is triggered when the asset value V;

declines to the firm-specific random default boundary L x D, where
L =T N2 7~ N(0,1), (2)

and Z is independent of W,. Thus, E(L) = L and var(L) = A\?. Notice that the presence
of stochastic default boundary makes the timing of default not predictable. Intuitively, at
any asset value, there is a finite probability that default can occur instantaneously when
Z is sufficiently large. This is similar in spirit to Duffie and Lando (2001), who introduce
uncertainty about the value of firm assets due to incomplete accounting information. Without
the stochastic default boundary (i.e., A = 0), the model collapses to the standard Black-Cox

model.?

For an initial asset value V{, default does not occur as long as

‘/OeaWt-i-(r—(S—JQ/Z)t > ZDBAZ—,\2/2. (3)
Since
at — vy 2an/o? at +y
P{Y, > y,Vs <t} =® — 2w/ P , 4
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for a drifted Brownian motion Y; = at + bW, with constant drift coefficient a and diffusion
coefficient b, and Yy = 0 > y (see, e.g., Harrison, 1985), we obtain the survival probability
conditional on Z = z, ¢(t|z), by setting a = (r — 6 — "2—2) and b = o:

g(t]2) = © (c CA(t) — A%) — 29 (0 CA() + AZ)) , (5)

5Our results are robust to different model specification when applying the Black-Cox model in the online
appendix B.2.



where ®(+) is the cumulative normal distribution function, and

C = = 5 (6a)
At) = a\/f,i (6b)
y = log (ﬁ/?) — )\2 Az (6¢)

Next,

2

where A'(t) = VIO

The unconditional survival probability ¢(¢) is then given by
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Eq. (8) can be further expressed in terms of the cumulative distribution functions of bivariate

with

normal distributions.

Accordingly, the price of a T-period coupon bond with annual coupon rate ¢ and face

value $1 is:
Do(T) = ES l /0 e drduet ds e o + /0 Yo limde 1 ds| . (10)
With discrete (quarterly) coupon payments ¢, the above equation becomes:
DuT) = 3 Fals)ats)e + Fo(T)a(T) = [ Po(s)d (o), (1)

where Py(s) is the price of a risk-less zero-coupon bond with maturity s at time 0.



2.2 Empirical implementation

We obtain monthly observations of corporate bond prices from three data sources: Lehman
Brothers Fixed Income Database, TRACE, and Mergent FISD/NAIC.

Lehman Brothers Fixed Income Database provides month-end bid prices from 1973 to
1998. Since Lehman Brothers used these prices to construct the Lehman Brothers bond
index while trading on it, the traders at Lehman Brothers had the incentive to provide
correct quotes. Thus, although the prices in the Lehman Brothers Fixed Income Database are
quote-based, they are generally considered reliable. However, we exclude matrix prices, which

are set using algorithms based on the quoted prices of other bonds with similar characteristics.

The data from Mergent FISD/NAIC and TRACE are transaction-based. The Mergent
FISD/NAIC database consists of actual transaction prices reported by insurance companies
from 1994 to 2002. The TRACE data provide actual transaction prices from 2002 to 2020,
covering more than 99% of the over-the-counter (OTC) activity in the U.S. corporate bond
markets since 2005. Follow Bessembinder et al. (2008), we construct the daily bond price by

calculating the trading-volume-weighted average of the transaction price.

Because our goal is to measure the valuation gap between the equity and bond markets,
we prioritize the datasets based on transaction prices and complement them with quoted
prices. Thus, whenever there are duplicates of bond records, we use the priority of TRACE,
Mergent FISD/NAIC, and then Lehman Brothers Fixed Income Database.

We set the current date as time 0, and following the standard CreditGrades model, we

approximate the market value of the firm Vj as:
Vo= So+ LD, (12)

where Sy is the equity value from daily CRSP data set, and D is the total liability (data
item LT) from Compustat. When calculating Sy, we match the date of stock price with
that for bond price, to ensure that the model-implied bond price and actual bond price are
comparable at the same day. As a key input of the model, the market value of equity Sy
has a direct impact on the distance to default (equation (6¢)) and the survival probability
(equation (8)). All else being equal, a higher equity value increases the survival probability

and the implied bond valuation.

According to the CreditGrades model, we set the average recovery rate L to 0.5, and
the volatility of the recovery rate A in equation (2) to 0.3. Equity volatility o is calculated
using daily returns in the past three years up to the end of the previous month to avoid

the potential look-ahead bias. To estimate the asset volatility, we follow Feldhiitter and



Schaefer (2018) and first calculate o = 0%(1 — Ry), where Ry = Sy/(So + D), and then adjust
o by a factor of 1 if Ry < 0.25, 1.05 if 0.25 < Ry < 0.35, 1.10 if 0.35<Ry < 0.45, 1.20 if
0.45< Ry <0.55, 1.40 if 0.55<Ry < 0.75, and 1.80 if Ry > 0.75. We adopt this adjustment
because it is transparent and easy to replicate. It also avoids a potential problem from the
standard deleverging procedure that gives rise to unreasonably small asset volatilities for

highly distressed and leveraged firms.

To calculate the bond value in equation (11), we interpolate, in an interval of six month,
the yield curve of zero-coupon bonds obtained from the Federal Reserve Bank of St Louis
Economic Data (FRED) website. Deviating from the standard CreditGrades model, we follow
Feldhiitter and Schaefer (2018) and Bai et al. (2020), and calculate the payout rate as the
sum of the dividend, interest expenses, and stock repurchases, divided by the sum of market
value of equity and debt each quarter. Dividend payment is the indicated annual dividend
(DVI) from Compustat, multiplied by the number of shares. The indicated annual dividend
is updated on a daily basis and is adjusted for stock splits, etc. Net stock repurchases are the
total repurchase of common and preferred stock, and interest payments to debt holders are
calculated as total interest payments for the past four quarters. If the payout ratio is larger
than 0.15, we set it to 0.15. We require a lag of at least two months between the accounting

information and the market equity and bond prices.

2.3 The debt-equity spread

With the above inputs, we solve for the theoretical bond price in equation (11) and convert
it to the equity-implied credit spread CS®. We follow Gilchrist and Zakrajsek (2012) and
calculate the credit spread as the difference between the bond yield and the yield of a
hypothetical Treasury security with the same cash flows as the underlying bond. Then, we
obtain the difference between the actual spread CSP and the equity-implied spread CS¥ for

each bond, each month, as our valuation gap measure:
DES = CSP — CS¥. (13)

Since credit spreads and equity valuation are negatively related in the CreditGrades model,
DES potentially measures the degree of equity overpricing relative to bond value. When the
actual credit spread (CSP) is high relative to the equity-implied credit spread (CS¥), equity
investors can be more optimistic about the firm’s fundamentals than the bond investors, and
stocks are overpriced. On the other hand, when CSP is less than CS¥, the stock price can be

relatively undervalued.



We measure firm-level credit spreads (both actual and implied) and DES as the bond
market value-weighted average of credit spreads and DES across all bonds within a firm.
In the following sections, we use the bond-level DES to evaluate the cross-sectional bond
return prediction and firm-level DES to assess the cross-sectional stock return prediction and

corporate activities.

Panel A of Figure 1 plots monthly equity-implied credit spreads of five quintile portfolios,
sorted by actual credit spreads. Portfolio credit spreads are calculated as the equity market
value weighted average credit spreads across all firms within a portfolio. Panel A shows that
the extended CreditGrades model generates large variations in the credit spreads. The implied
credit spreads generally align well with their actual counterparts, with a correlation coefficient
of 75%, although the extended CreditGrades model tends to underestimate the actual credit
spreads when they are above 1800 basis points. Panel B illustrates the histogram of the
monthly portfolio DES. For the actual credit spread quintiles, DES ranges from less than
—400 basis points to 800 basis points. Furthermore, DES is in general normally distributed
with a mean of 25.17 basis points, and slightly skewed to the right. In an untabulated analysis,
we find the match between actual and equity-implied credit spreads is noisier at the bond
level, with an average bond-level DES about 70 bps, implying that model-implied credit
spreads undershoot those in the data. This is consistent with the literature on the credit
spread puzzle and the fact that a part of the actual spreads are due to secondary-market
illiquidity that is absent in the CreditGrades model.®

[Insert Figure 1 here]

Figure 2 plots the time series of the distribution of firm-level DES, including its median,
25th and 75th percentiles. The median DES is relatively smooth and does not strongly
comove with business cycles. Furthermore, the cross-sectional dispersion tends to increase
around recessions, as is evident from the recessions in 1991, 2001, and more recently, the
2008 Great Recession.

[Insert Figure 2 here]

Overall, the results in this section indicate that our extended CreditGrades model does a

reasonable job in matching the observed credit spreads.

6See Jones et al. (1984) and Huang and Huang (2012) for the “credit risk puzzle”. While recent developments
in the literature have introduced various ingredients into the simple model, such as time-varying volatility, the
market risk premium, jumps, and countercyclical bankruptcy costs (Chen et al., 2009; Chen, 2010; Bhamra
et al., 2010; Du et al., 2019), it is still under debate whether a simple model, like Black and Cox (1976), is
able to account for the credit risk premium (Chen et al., 2009; Feldhiitter and Schaefer, 2018; Bai et al.,
2020). See Longstaff et al. (2005) and Chen et al. (2018) for the decomposition of credit spreads into default
and liquidity components.
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3 Asset pricing

In this section, we study the asset-pricing implications of DES. We describe the data sources
and variable definitions in Section 3.1. We examine the cross-sectional relation between DES
and future stock and bond returns using portfolios in Section 3.2 and using Fama-MacBeth
regression in Section 3.3. In Section 3.4, we conduct several empirical tests to differentiate
the mispricing interpretation from risk-based explanations. We link our results to the capital

structure abitrage in Section 3.5.

3.1 Data and variable definitions

The data used in our analyses come from several sources. Besides the bond data we described
in the previous section for constructing DES, we also obtain monthly stock data from the
Center for Research in Security Prices (CRSP) database and monthly bond return data
from Lehman Brothers Fixed Income Database, NAIC, and Wharton Research Data Services
(WRDS), as well as accounting data from the Compustat annual and quarterly databases.
Specifically, we use the monthly bond return from Lehman Brothers Fixed Income Database
from January 1980 to March 1998, and calculate bond returns using transaction prices
from NAIC from January 1994 to July 2002. Whenever two returns are overlapped for the
same bond, we use the one from NAIC because they are transaction-based. The detailed
calculation can be found in Appendix . After July 2002, we use RET _L5M from WRDS
Bond Return Database to measure monthly bond returns. To ensure there are sufficient
stocks in the cross-section, we start the asset pricing analyses from 1980, and our benchmark
sample includes all NYSE/AMEX/NASDAQ common stocks (excluding stocks in the financial
industry) from January 1980 to December 2020.

All firm characteristics and control variables used in Section 3 are described in Panels A
and B of Table 1.

[Insert Table 1 here]

3.2 DES portfolios

We start our analyses on the stock and bond return predictions using the portfolio approach.
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3.2.1 Stock portfolios

At the beginning of each month from January 1980 to December 2020, we sort stocks
into quintiles based on the firm-level DES. These portfolios are held for one month before

rebalancing at the beginning of the next month.

Table 2 reports the summary statistics of the characteristics of these portfolios. Panel A
examines the relation between DES and its input variables in the extended CreditGrades
model. Due to the data availability of corporate bond prices, each portfolio has around 67
stocks per month on average. The average DES is —61.64 basis points in the lowest DES
quintile and 251.69 basis points in the highest DES quintile. The cross-sectional difference
in DES is driven by both CSP and CSF, as both display a U-shape across DES quintiles.
Panel A also shows that high DES stocks have slightly higher asset volatility, lower financial
leverage, and a lower payout rate than low DES stocks. The relation between DES and bond

maturity is non-monotonic.
[Insert Table 2 here]

Panel B of Table 2 reports the means of several other stock, bond, and firm characteristics
for firms in the DES quintiles. The relations between DES and most of these characteristics
are weak and display either a U shape or a hump shape across quintiles. Compared with
those in the bottom DES quintile, firms in top DES quintile tend to have smaller market

capitalization, lower book-to-market ratio, and higher gross profitability.
[Insert Table 3 here]

Table 3 reports the average returns and abnormal returns from the CAPM, the Fama
and French (1992) three-factor model, the Carhart (1997) four-factor model, the Fama and
French (2015) five-factor model, Stambaugh and Yuan (2017) mispricing factor model, and
Hou et al. (2015) g-factor model (HXZ), for the DES quintile portfolios. We report the
results using both value-weighted (VW) scheme and equal-weighted (EW) scheme. Panel
A shows stocks with high DES have an average VW return of 4.57% per year, lower than
the 12.29% for stocks with low DES. The return spread between these two quintiles (L-H) is
7.72% per year, with a t-statistic of 4.29. This DES premium cannot be explained by the
aforementioned asset pricing models. The abnormal returns remain more than 6% per year
and statistically significant when controlling for these factors. Importantly, the alpha for the
long-short portfolio in the Stambaugh and Yuan (2017) mispricing factor model test is 7.09%
per year, indicating that DES contains very different information about firms’ misvaluations

from the two mispricing factors in Stambaugh and Yuan (2017).
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As reported Panel A of Table 3, the results using the equally weighted portfolios are
similar and quantitatively stronger than those of the value-weighted portfolios. The average
annualized return spread is 7.93% per year, with a t-statistic of 4.33. The abnormal returns

from the above-mentioned factor model tests are statistically significant.

We illustrate the stock return predictability of DES in the top panel of Figure 3. We
plot the cumulative returns of the long-short portfolio, which buys low-DES stocks and
short-sells high-DES stocks. The value-weighted strategy produces relatively stable returns.
Interestingly, the equally weighted portfolio generates similar performance as the value-
weighted portfolio before 2000 and then starts to outperform. Economically, a $1 investment
in the value-weighted portfolio can be turned into $17 at the end of the sample period, and

the corresponding balance for the equally weighted portfolio is around $20.”

[Insert Figure 3 here]

3.2.2 Bond portfolios

We report average annualized excess bond returns and alphas in the cross-section in Panel
B of Table 3. We sort bonds into quintiles based on their bond-level DES of the previous
month, and calculate the value- and equal-weighted portfolio bond returns. In sharp contrast
to the equity market, the average value-weighted bond returns increase with DES, with an
annualized return spread of —4.97% (t¢-statistic = —5.41) for the VW scheme, and —6.35%
(t-statistic = —6.37) for the EW scheme.

Then, we control for the standard factors. When we regress VW portfolio bond returns
on the bond market returns, proxied by the Merrill Lynch index, the bond alpha of the
long-short portfolio (L-H) becomes even larger, at —5.13% (t-statistic = —5.86) per year.
When we control the four factors proposed by Bai et al. (2019), which include the bond
market factor, downside risk factor (DRF), credit risk factor (CRF), and liquidity risk factor
(LRF), the alpha becomes —2.86% (t-statistic = —2.05).® We observe quantitatively stronger
results when we the equal-weighted scheme.

We also visualize the bond return predictability of DES in Panel B of Figure 3, by plotting

the cumulative returns of the long-short bond portfolio, which simultaneously shorts low
DES bonds and longs high DES bonds. The performance of the bond DES strategy is stable

In the appendix, we explore the long-horizon stock return prediction of DES using buy-and-hold portfolios.
We find that DES significantly predicts stock return even five years following the portfolio rebalancing. This
result indicates that if DES measures systematic risk or mispricing, this risk exposure/mispricing should be
highly persistent.

8Note the sample period for the four-factor model test only starts in July 2004 due to the data availability
of Bai et al. (2019) factors.
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over the sample period. Economically, a $1 investment in the value-weighted portfolio would
generate a payoff of $7.3 at the end of the sample period, and the same investment for the

equally weighted portfolio generates a payoff of $12.8.

3.2.3 Subsample analyses

We formally test the stability of DES return prediction using subsample analyses. We use
the end of 1999 as the midpoint and split the full sample period into two subsamples. Panel
A of Table 4 shows that despite the shorter time series in each subsample, the long-short
portfolio generates large negative returns in both samples and for both weighting schemes.
The average annualized value-weighted (equal-weighted) stock return is 7.74% (7.32%) from
January 1980 to December 1999, and is 7.71% (8.51%) from January 2000 to December 2020.
Moreover, the abnormal returns from the 4-factor Carhart model, a®*, increase from the raw

return spreads in both subsamples.
[Insert Table 4 here]

We find similarly stable return prediction across the subsamples for bonds in Panel B. The
average annualized value-weighted (equal-weighted) bond return is —4.32% (—5.33%) from
January 1980 to December 1999, and is —5.58% (~7.32%) from January 2000 to December

k

2020. After controlling the bond market factor, the abnormal bond returns, o™*, remain

economically and statistically significant.

3.3 Fama-MacBeth regressions

While portfolio analyses and asset pricing tests control for standard factor exposures, the
Fama-MacBeth regression allows for additional controls of firm and bond characteristics. In

this section, we run monthly Fama-MacBeth regressions to test the return prediction of DES.

We present results for stock returns in Panel A of Table 5, where we control for nine
conventional firm-level characteristics in Fama-MacBeth regressions. These characteristics
include idiosyncratic volatility (Ivol), financial leverage (Mlev), failure probability (FP),
logarithm of firm size (logSize), book-to-market equity ratio (BM), momentum (Mom), gross
profitability (GP), and asset growth (AG), and asset tangibility (Tangibility).

[Insert Table 5 here]

In the univariate regression in the first column of Panel A, the coefficient of DES is

—0.16 with a t-statistic of —4.45. Although the inclusion of some other firm characteristics
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tends to lower the return predictive power of DES, the results in Specifications 2-6 show
that the coefficient of DES remains statistically significant. In Specifications 7-8, we also
consider the mispricing score (MispScore) from Stambaugh et al. (2012). Since the data for
MispScore end in December 2016, we report the bivariate return predictive regressions using
DES and MispScore in Specification 7. Consistent with the findings in Stambaugh et al.
(2012), MispScore is a strong and negative predictor for future stock returns. However, the
return predictive power of DES remains largely intact when we control for MispScore. In
Specification 8, we include all the variables we considered in Specifications 1-7. The coefficient
on DES remains negative and statistically significant from zero. Our results suggest that,
although MispScore is a comprehensive measure based on several equity anomalies, our

valuation gap measure, DES, contains distinct information about future stock returns.

In Panel B, we report the results from monthly Fama-MacBeth bond return predictive
regressions controlling for both firm and bond characteristics. In the univariate regression in
Specification 1, the estimated coefficient of DES is 0.13 with a ¢-statistic of 5.2, which confirms
the portfolio results from Panel B of Table 3. The DES coefficient remains economically
and statistically significant in Specifications 2 to 4, where we introduce firm characteristics
described in Panel A, Table 5. The positive coefficient on market leverage reflects the greater
default risk associated with a higher leverage. When bond characteristics, including logarithm
of bond size (logBondSize), amount outstanding (Amount), bond age (Age), coupon rate
(Coupon), and bond maturity (Maturity), are also controlled in Specification 5, the DES
coefficient remains at 0.12 (t-statistic = 5.13). Among all the bond characteristics, the bond
size and amount outstanding show significant predictive power. The results are quantitatively

similar when we include both firm and bond characteristics in Specification 6.

In Specifications 7 and 8 of Panel B, we also control for mispricing score (MispScore) from
Stambaugh et al. (2012). While DES remains a strong, positive return predictor, we find the
coefficient on MispScore is negative but statistically insignificant. Along with the finding from
the stock return prediction in Panel A, this result highlights an important difference between
DES and MispScore. The negative coefficients of MispScore in both stock and bond return
predictions is consistent with MispScore being a mispricing measure of the underlying asset,
that is, absolute mispricing. In contrast, the opposite signs of the DES coefficients from stock
and bond predictions suggest that DES is likely to capture the relative mispricing between
equity and debt of the same underlying asset. The opposite signs are also inconsistent with
rational explanations based on asset risk. If DES measures asset risk exposure, the stock
and bond risk premiums should increase or decrease with DES simultaneously, because both

securities are contingent claims on the same underlying assets.
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CreditGrades model inputs: One may wonder if the return predictive power of DES is
driven by the inputs of the extended CreditGrades model. We address this question in Table
6. In Panel A, we study how the model inputs predict the cross-sectional stock return using
univariate Fama-MacBeth regressions. These inputs include asset volatility (AVol), leverage
ratio (Lev), and payout ratio (Payout). Specifications (2)-(4) show that asset volatility
negatively predicts stock returns, whereas the coefficient on the payout ratio is significantly
positive. However, in the horse race Fama-MacBeth regression between DES and these model
inputs in Specification (5), DES remains a strong return predictor whose coefficient barely

changes from the univariate regression in Specification (1).
[Insert Table 6 here]

Furthermore, we horse race DES with the actual credit spread (CSP) and implied credit
spread (CS®). A striking finding in Specifications (6) and (8) is that although their difference
(DES) can predict future stock returns, neither CSP and CS® has a significant coefficient in
the Fama-MacBeth regressions. In the bivariate regressions in Specifications (7) and (9), only

the coefficient of DES remains statistically significant.

In Panel B, we compare the performance of DES and CreditGrades model inputs and
implied and actual credit spreads in predicting bond returns. Besides the firm characteristics
from Panel A, we also include bond maturity and dummy variable for callable bonds in
the Fama-MacBeth regressions. Again, we find the coefficient of DES remains statistically

significant after controlling for these model inputs and credit spreads.

Taken together, these results suggest the return predictive power of DES does not come
from the CreditGrades model inputs, implied credit spreads, or actual credit spreads alone.
Instead, it is the difference between the actual and implied credit spreads, or the valuation
gap between equity and debt markets, that contains the information about future stock and

bond returns in the cross section.

3.4 Risk or behavioral bias?

In this section, we provide empirical evidences for economic interpretations of the DES return

predictive power.

3.4.1 Firm dynamics

We start by examining the dynamics of firms with different DES. Figure 4 plots the average
DES, equity-implied credit spread (CS®), actual credit spread (CSP), asset volatility (Avol),
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financial leverage (Lev), payout ratio (Payout), gross profitability (GP), failure probability
(FP), and stock returns (Ret) for firms in the low- and high-DES quintiles, five years before
and five years after the portfolio rebalancing (i.e., event year 0). The figure shows that,
although the spread in DES between these two portfolios is the largest around year 0 (by
construction), the difference is highly persistent. Even five years after (and before) portfolio

rebalancing, there is a sizable spread in DES (about 200 bps) between these two portfolios.
[Insert Figure 4 here]

The second and third columns in the first row show that, before portfolio formation,
both high- and low-DES firms experience increases in CSP, indicating that bond investors
consider these stocks getting riskier. However, equity investors in these two groups of stocks
think differently. While the equity-implied credit spread also increases for low-DES firms,
the investors in the high-DES stocks disagree with the bond investors and the equity-implied
credit spread actually falls before year 0.

The remaining panels of Figure 4 provide additional insights on this divergence. In
the years before portfolio formation, high-DES firms have high gross profitability, good
stock performance, and decreasing payout rate. In contrast, low-DES firms suffer from low
profitability and stock returns. Their payout rate, failure probability, and financial leverage
all increase substantially, and therefore, both equity and bond investors perceive high credit

risk in these stocks.

The difference in firm dynamics can be consistent with both risk exposures and behavioral
biases. As we have discussed earlier, investors can overreact to the past stock and accounting
performances, giving rise to an overvaluation of high-DES stocks and undervaluation of low-
DES stocks relative to their bond prices. Alternatively, high DES firms have high valuation
ratios and have more growth options than low DES firms. To the extent that growth options
have different risk premiums than assets-in-place, the valuation gap may arise from model
misspecifications and correlate with firms’ systematic risk. The rest of this section is aimed

at differentiating these two channels.

3.4.2 Analyst long-term earnings forecasts

La Porta (1996) documents that companies with high long-term earnings growth forecasts
(LTG) earn poor returns relative to companies with low LTG. He interprets this finding
as evidence that analysts, as well as investors who follow them or think like them, are too
optimistic about stocks with rapidly growing earnings and too pessimistic about stocks

with deteriorating earnings. In this subsection, we examine the relation between DES and
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analyst LTG. If DES captures equity overpricing, we expect high-DES stocks to have high
contemporaneous LTG relative to stocks with low DES. Furthermore, these high forecasts of

earnings growth would gradually be corrected by disappointment in subsequent years.

We obtain the LTG data from the IBES summary unadjusted file. Table 7 confirms our
conjecture. Panel A summarizes the average LTGs across the DES quintiles. The results
show a monotonically increasing relation between LTG and DES. Stocks with low DES
have a forecasted long-term earnings growth of 10.21% per year, which is smaller than the
12.73% per year seen for stocks with high DES. This positive correlation between LTG and
contemporaneous DES suggests that high-DES stocks may be more overvalued by analysts
than stocks with low DES.

[Insert Table 7 here]

In Panel B, we run Fama-MacBeth cross-sectional regressions of cumulative revisions in
LTG in the subsequent 12, 24, 36, 48, and 60 months on our DES measure. We find the
estimated coefficient of DES negative but insignificant, in predicting the revision in the next
12 months . However, from 24 months ahead, the coefficient of DES becomes statistically
significant. Its magnitude increases with the horizon, with the estimated coefficient rising
from —0.15 for the 24-month revision to —0.32 for the 60-month revision. These results
indicate a strong mean reversion of the forecasted earnings growth, lending support to a

mispricing interpretation of DES.

3.4.3 Limits to arbitrage

In the section, we study the role of limits to arbitrage in both stock and bond return
predictions by DES. If DES measures the relative mispricing between debt and equity, we
would expect the DES premium to be stronger among stocks and bonds with higher limits
to arbitrage (Shleifer and Vishny, 1997). We perform sequential double sorts to test this
prediction. That is, we first sort stocks and bonds into terciles on proxies of limits to arbitrage

and then within each tercile of the limits to arbitrage proxy, sort into terciles on DES.
[Insert Table 8 here]

Table 8 reports the DES portfolio returns for each tercile based on the limits to arbitrage
measures. We consider six proxies for stock liquidity: equity size, Amihud illiquidity (Amihud,
2002), dollar volume, days to cover, equity lending fee, and analyst forecast dispersion. The

DES premium is substantially larger among small, illiquid stocks with lower dollar trading

18



volume, more days to cover, higher equity lending fees, and greater forecast dispersion. For
example, the DES premium is 7.25% per year for small stocks, as compared with 3.74% for
big stocks. Similarly, the DES premium is 13.22% among stocks with high equity lending
fees, but only 2.91% among stocks with low equity lending fees. The differences conditional
on the limits to arbitrage conditions remain largely the same, after controlling for Carhart

four factors.

When it comes to bond markets, we choose five different proxies, namely, bond size,
Amihud illiquidity, dollar volume, gamma (Bao et al., 2011), and the number of trading days
within each month. Except for the bond size, all the rest four measures are constructed using
the transaction data from TRACE from 2002 to 2020. As shown in Table 9 and similar to
that in stocks, the DES premium in bonds is substantially larger among small bonds, with a
high level of Amihund illiquidity, low turnover, high bond gamma, and low number of trading
days. Among all the five measures, bond size demonstrates the largest difference in the DES
premium between high and low terciles. That is, the DES premium is —2.13% per year for

big bonds, in contrast to —7.03% for small bonds.
[Insert Table 9 here]

In Table 10, we examine the effect of bond illiquidity on DES stock premiums. Studies
including Dick-Nielsen (2009), Bao et al. (2011), Friewald et al. (2014), and Lin et al. (2011)
document an important contribution of bond illiquidity to the observed credit spread. Since
our extended CreditGrades model abstracts from bond illiquidity, we expect a negative
correlation between stock DES premium and bond illiquidity, because more liquid bonds
are better captured by the extended CreditGrades model, which in turn makes DES more
informative about stock misvaluation. Indeed, the results in Table 10 show that the stock
DES premium is stronger in firms with lower bond Amihud illiquidity, higher bond dollar

volume, and greater number of tradedays of bonds.
[Insert Table 10 here]

Taken together, the results on limits to arbitrage lend further support to the mispricing

interpretation of the DES premium.

3.4.4 Risk factor exposures

The asset pricing test results in Section 3.2 show that the DES stock and bond portfolio

returns cannot be explained by the standard factor models in the literature. To the extent
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that some of these factor models such as CAPM, Fama and French 3-factor model, and Hou,
Xue, and Zhang (2015) 4-factor model capture systematic risks, the asset pricing test results
suggest that the return prediction of DES is beyond these risk exposures. However, it is still
possible that DES predicts returns due to its exposure to other macroeconomic risk factors

not captured by these factor models. In this section, we consider two such possibilities.

One possible risk channel is through volatility shocks. Due to the nonlinear features of
equity and debt in structural models (e.g., Merton (1974)), an increase in asset volatility can
raise stock price but lowers the corresponding bond price. Furthermore, as shown in Figure
4, high DES firms tend to have high valuation ratios, so their stocks, which derives much of
their values from growth options, may benefit more from an increase in asset volatility. In
contrast, low DES firms suffer from past low profitability and stock returns and have higher
financial leverage. An increase in asset volatility lowers their bond values more than bonds of
high DES firms. Herskovic et al. (2016) have documented that idiosyncratic volatility has a
common movement that carries a negative price of risk, so the opposite patterns in volatility
exposures of stocks and bonds across DES quintiles can possibly explain a negative DES

stock return spread and a positive DES bond return spread.

We test this risk channel and report the results in Panel A for stocks and Panel B for bonds
in Table 11. We consider three empirical measures of volatility shocks. The first measure is
the shock to the common idiosyncratic volatility from Herskovic et al. (2016) (dCIV), which
captures the common movement of idiosyncratic volatility across firms. The second measure
is the change in the variance of daily market returns within a month (AMVAR) and the third
measure is the change in CBOE VIX (dVIX). A caveat for the last two measures is that they
may also capture the quantity of systematic risk that affects the discount rate. For each
volatility measure, we run time series regressions of the DES portfolio return on the market
factor and the volatility shock measure. The top three specifications in each panel report the
coefficients of volatility shocks. The results show that there is a decreasing pattern in the
dCIV and dMVAR betas among stock portfolios, and the stock return betas tend to be more
negative for high DES firms than low DES firms. However, this would require a positive
volatility risk premium to explain the average returns across these DES quintiles, which is in
contrast to the findings of a negative risk premium for dCIV in Herskovic et al. (2016) and
aggregate volatility risk in Ang et al. (2006). For the bond portfolios in Panel B, although
the significant volatility betas for the L-H portfolio contribute to the bond DES premium,
the general beta pattern is non-monotonic across the DES quintiles. Therefore, the volatility

exposures are unlikely to explain the difference in the stock and bond DES return spreads.
[Insert Table 11 here]
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Another related possibility is the exposure to jump risk. Bai et al. (2020) show that
introducing jumps into a diffusion-based structural model can quantitatively resolve the
“credit spread puzzle”, so it is possible that DES is a measure of jump exposures because
our model abstracts from jump process and can be misspecified. We follow Benzoni et al.
(2011) and measure jump risk as the change in the implied volatility of the deep out-of-the-
money Standard and Poor’s (S&P) 500 put options. Panel A, Table 11 shows that there is
no significant difference in jump risk exposure between the high and low DES stocks. In
Panel B, the relation between jump beta and DES is again non-monotonic across DES bond
portfolios. In the online appendix, we double sort bonds into 3-by-3 portfolios based on their
time-to-maturity and DES. Bai et al. (2020) document that short-maturity bonds are more
exposed to the jump risk than long-maturity bonds. If jump risk is an important driver
for the DES premiums, we expect the DES bond return spreads to be stronger among low
time-to-maturity bonds. However, the results from the double sorts suggest that the DES
premium is in fact larger among long-maturity bonds. Therefore, these evidences combined

suggest that jump risk cannot be a major explanation for the DES premiums

Kogan and Papanikolaou (2014) offer a risk-based explanation for the value premium
based on asset composition. According to their interpretation, growth stocks have more
growth options and have higher exposures to the investment-specific technology shocks than
value stocks, which derive more value from assets in place. They show that investment shocks
carry a negative risk premium, so investors demand higher expected returns for value stocks
than growth stocks. Because of the nature of equity and bond contracts, stocks can be more
informative about growth options than bonds, so the second possibility is that the difference
in their exposures to the investment shocks can explain the cross-sectional stock and bond
returns based on DES sorts. The next two specifications of Table 11 again do not support
this interpretation. When we use the investment-minus-consumption (IMC) portfolio return
and the negative change in the price of equipment relative to nondurable consumption goods
(Ishock) as the investment shock measures, we find the investment shock betas are weak and

non-monotonic across stock and bond DES quintiles.

Lastly, we examine the exposures of DES portfolios on the change in the 10-year government
bond yield. If these quintiles have different durations and exposures to the government bond
yield change, they may have different risk premiums. The last row of each panel in Table 11
shows that there is not evident, monotonic pattern in the exposure to the yield change across
these portfolios. Taken together, our results in this section do not find empirical supports for

a risk-based explanation of the stock and bond returns across DES portfolios.
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3.5 Relation to capital structure arbitrage

The previous subsections uncover a robust predictive power of DES on the cross-sectional stock
and bond returns separately. The opposite signs on the stock and bond return predictions
suggest that investors could combine these two asset classes to achieve an even better risk-
return tradeoff, an idea that is closely related to the so-called capital structure arbitrage, in
which investors exploit the relative price difference of securities of the same firms. In this

subsection, we analyze the performance of this strategy in our sample.

A capital structure arbitrage strategy uses an estimated hedge ratio to form hedged
portfolios, which is expected to eliminate underlying asset risk and make risk-free profits.
Because the estimated hedge ratio depends on a specific credit risk model, it potentially suffers
from model misspecifications and measurement errors, therefore having residual exposures to
both idiosyncratic and systematic asset risks. Schaefer and Strebulaev (2008) argue that,
although credit risk models such as Merton (1974) might underestimate credit spreads due to
the missing liquidity component, they provide “quite accurate predictions of the sensitivity
of corporate bond returns to changes in the value of equity (hedge ratios)” because the bond
price change is mostly driven by changing asset values. As such, we follow Schaefer and

Strebulaev (2008) and construct the bond-level hedge ratio, n using our CreditGrades model.”

To implement the capital structure arbitrage strategy, we short-sell $n of stock for each
dollar of bond purchased. The return from this strategy, 7 = r? — nr®, is expected to have
zero exposure to the asset risk, where r” and 7° is bond and stock return, respectively. In
the context of our analyses, if 7 reflects the correction of mispricing between the stock and
bond markets, and if DES captures the strength of relative mispricing, we expect average r
increases with DES. To test this prediction, we sort bonds in our sample into quintiles based
on their DES and compute the average portfolio hedged return r. Table 12 reports the
average r1| the abnormal return from the CAPM model with both stock market and bond
market factors, and the abnormal return from a 7-factor model with three equity factors from
Fama and French (1992) and four bond factors from Bai et al. (2019), for each DES quintile.
Panel A shows the value-weighted result, where the weights are based on the lagged bond

value.'® Consistent with our conjecture, the average hedged return increases strongly with

9We use the central difference scheme, i.e., gﬁg = g (D(E+AE)) ED(E AE) , to calculate the bond-level
hedge ratio numerically by perturbing the input equity value in the extended CredltGradeb model. In our
untabulated results, we follow Schaefer and Strebulaev (2008) and validate our hedge ratio measure. By
regressing excess bond returns on the product of the hedge ratio and excess stock returns, we find the
estimated coefficients are close to one.

10The average hedged returns are positive for all portfolios except the low DES quintile. This is likely
because rI does not completely hedge out all asset risks due to model misspecifications or measurement errors

described above, and the positive average returns may reflect the premiums associated with the remaining
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DES. The average hedged return is —0.21% per year for low DES quintile, as compared to
7.35% per year for the high DES quintile. Their difference is more than 7 standard deviations

from zero.
[Insert Table 12 here]

The larger t-statistic in the H-L portfolio than those of the individual DES quintiles is
worth noting and is due to the residual asset risk, especially the systematic risk, in the hedged
position. Yu (2006) shows that grouping the hedged positions of different firms into portfolios
can diversify idiosyncratic asset risks and improve the Sharpe ratio. Our result takes one
step further and highlights that a long-short position between the high and low DES hedged
quintiles could reduce the remaining systematic risk exposures and achieve an even better

risk-return tradeoff.

The pattern is similar when we control for equity and bond factors and when we use equal-
weighted portfolios (Panel B, Table 12). In Figure 5, we plot the cumulative returns of the
long-short hedged position for both value-weighted and equal-weighted portfolios. Compared
with the same plots for equity-alone and bond-alone DES strategies, the hedged position
features much lower volatility an better performances. $1 invested in this hedged portfolio
at the beginning of the sample period can be turned into around $20 in the value-weighted

strategy and more than $30 in the equal-weighted strategy.
[Insert Figure 5 here]

Taken together, our findings on the stock and bond return predictions of DES can be

used to improve the performance of capital structure arbitrage strategy.

4 Corporate decisions and insider trading

We have demonstrated the implications of our valuation gap measure, DES, for investors in
the equity and bond markets. In this section, we proceed to validate our measure from the
perspective of corporate management. In particular, we are interested in the relation between

DES and corporate actions, including corporate security issuance and insider trading.

Unlike outside investors, a firm’s management team usually possesses private information

and is better at assessing the true values of their company’s stocks and bonds. Thus, if DES

systematic risk exposures. Indeed, we find that the betas of all DES quintiles to the bond market factor are
very close to one (untabulated), and after controlling for the bond and equity factors, the average abnormal
hedged return across DES quintiles is much closer to zero.
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truly measures the valuation gap between debt and equity, we expect the management to take
advantage of this gap by issuing securities and, perhaps, trading stocks in their compensation

packages.

4.1 Corporate security issuance

Firms time the market when issuing securities. They tend to issue securities when their
valuations are high and repurchase them when their valuations are low. It has been well
documented that firms time equity markets (Ritter, 1991; Baker and Wurgler, 2000; Hong
et al., 2008; Dong et al., 2012). Baker and Wurgler (2002) show that a firm’s capital structure
is mainly attributed to “equity market timing”. However, there is scarce evidence of firms’
timing debt markets or jointly timing both debt and equity markets. One exception is Ma
(2019), who documents that non-financial firms arbitrage by simultaneously issuing and
repurchasing across equity and bond markets. She uses CDS and bond returns to proxy for
the mispricing of corporate debt, maybe because there is no widely agreed measure of debt
mispricing in the current literature. Therefore, our DES measure is particularly useful in

studying cross-market arbitrages.

We examine the predictive power of DES for corporate securities issuance. We run panel
and logistic regressions of quarterly corporate activities on lagged DES, and other mispricing
variables, namely, actual credit spreads, market-to-book equity (ME/BE) ratio and mispricing
score. We follow Ma (2019) and use actual credit spreads to proxy for the debt market
misvaluation. We also use the market-to-book equity ratio to proxy for the mispricing of
equity, the deviation of a firm’s market value from its fundamental book value. We include
standard control variables, such as the logarithm of total assets, profitability, tangibility,
and market leverage. The market leverage is included because it is well known that firms
actively adjust capital structure and that leverage ratio is mean-reverting (Leary and Roberts,
2005). Lastly, we consider the mispricing score from Stambaugh and Yuan (2017).'' In
all specifications, we control for both firm and time fixed effects. We require asset values
greater than one million, and winsorize all the accounting variables at the bottom and top

two percentiles.

[Insert Table 13 here]

HDetailed definitions of the variables can be found in Table 1.
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4.1.1 Panel regressions

We report panel regression results in Panel A of Table 13. First, when the dependent variable
is net equity issuance, the coefficient of DES is 0.12 with a ¢-statistic of 4.01 in the first
specification. This positive coefficient confirms our intuition that firms issue more equities
when their stocks are overvalued. Second, in the third specification where we include all the
competing mispricing measures, the coefficient of DES remains largely the same. While the
actual credit spreads and ME/BE show a weak impact, MispScore has a significantly positive
effect on equity issuance. Third, the estimated coefficients of market leverage (MktLev) are
the most significant among all the control variables considered, consistent with the mean
reversion of capital structure documented in the literature. Overall, this indicates that our
valuation gap measure carries the information about equity issuance beyond other mispricing

measures and control variables.

We next examine the relation between DES and corporate net debt issuance. A few
observations emerge. First, the negative coefficient of DES, —0.26 (t-statistic = —3.89), in the
first specification suggests a significant reduction in debt for firms with high DES. It remains
statistically significant after we include other control variables in the next two specifications.
Second, the estimate of CSP is positive, likely due to its high correlation with market leverage.
Third, the negative coefficient of ME/BE is consistent with the idea that firms with overvalued
equity prefer issuing equity than debt. Lastly, MispScore has a relatively weak effect on debt

issuance, which is not surprising because it is derived from equity market anomalies.

The opposite signs in the DES coefficients in equity and debt issuance suggest that firms
do time the markets by issuing equity to retire debt. However, the negative coefficient of
DES for debt issuance more than double that for equity issuance, imply that firms might
need additional funds to retire their debt. In the last panel where the dependent variable is
the change in cash holdings, the significant, negative coefficients on DES indicate that high

DES firms draw down cash to retire their undervalued debt.

Taken together, we find that DES is positively associated with net equity issuance, and
negatively with net debt issuance and changes in cash holdings in the subsequent quarter.
Interestingly, the online appendix shows that DES has no significant association with real
capital investments or R&D investments. The latter finding can be because, in contrast to

financial assets, real investments are costly to adjust and take time to build.
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4.1.2 Logistic regressions

Despite the relation between DES and net equity and debt issuances in Panel A, Table 13,
it is not clear whether firms arbitrage across equity and debt markets to take advantage of
the valuation gap. Specifically, when equity is overvalued relative to debt, does a firm issue

equity at the same time of retiring its debt?

We proceed to run logistic regressions to examine the arbitrage behavior of non-financial
firms in Panel B. In the first panel of equity-debt swap, the dependent variable is an indicator
variable that equals one if net equity issuance and debt retirement of the same firm occur
simultaneously in the same quarter, and zero otherwise. In the first panel, DES has a
significantly positive effect on the equity-debt swap across all the three specifications, whereas
ME/BE and MispScore (CSP) show the same positive (negative) sign as in Panel A. In the
second panel, the dependent variable is an indicator that equals one if the change of cash
holdings and net debt issuance of the same firm are both negative. The DES coefficients are
significantly positive and range from 2.99 to 3.16, confirming that the results in Panel A that
the firms draw down their cash holding to retire debt.

In conclusion, we demonstrate the unique information content of DES across equity and
debt markets. Complementary to Baker and Wurgler (2002), our results suggest that a firm
could lower its leverage ratio by issuing equity and retiring debt, indicating that firms act as
arbitrageurs to exploit the relative mispricing between the debt and equity markets. When

DES is high and debt is relatively underpriced, firms even draw down cash to retire debt.

4.2 Insider trading

Corporate managers with private information on the company trade their equity-based
compensation to maximize their own wealth.!? In this subsection, we examine how DES is
associated with subsequent insider trading. Our conjecture is that firms with high DES have

more stock sales by their insiders.

We test this conjecture using filing information from Thomas-Reuters Insider Filings from
1986 to 2020. We focus on non-derivative trades from Table 1 of Form 4, and require insiders
to hold a role among the top tier of their management team (i.e., with a non-missing value
for the item rolecodel). We include observations verified by the data provider (cleanse=R, H,

C). Following Cohen et al. (2012), we also remove “routine” trades by insiders.'?

12Evidence of informed insider trades can be traced back to Jaffe (1974). A non-exclusive list of works in
this large literature includes Lee (1997), Lakonishok and Lee (2001), Bhattacharya and Daouk (2002), Jeng
et al. (2003), and Cohen et al. (2012) among many others.

13Fach year, we identify routine traders who have traded in the same calendar month in the previous three
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We obtain the number of shares purchased (acqdisp=A and trancode=P) and sold
(acqdis=D and trancode=S) by insiders and construct two measures to proxy for insider
selling activities each quarter, including the fraction of insider sales volume (the number of
shares sold divided by the total number of shares traded each month) and the fraction of
insider sales (the number of sales divided by the total number of trades each month). We
then merge monthly insider trading measures with our DES measure as well as quarterly
Compustat data. Lastly, we follow Guay et al. (2021) and include control variables of the
previous quarter, namely, the logarithm of market capitalization, profitability, book leverage,
market to book equity ratio (ME/BE). We also include industry and time fixed effects, and

cluster standard errors at the firm level.
[Insert Table 14 here]

Table 14 reports panel results. When the dependent variable is the fraction of insider
sales volume, the coefficients of DES range from 1.35 to 1.63, which implies an increasing
selling among insiders of high DES firms. Second, the coefficient of DES remains statistically
significant when we include mispricing score and use a shorter sample that end in 2016. Third,
interestingly, while ME/BE suggests more insider selling, the negative estimate of MispScore
effectively implies less sales made by insiders. The latter result may be surprising but can be

due to the correlation between MispScore and other control variables such as ME/BE.

Our results are nearly identical when we change the dependent variable to the fraction of
the insider sales. Moreover, in the online appendix, we use alternative sample, which include
routine trades, and perform additional tests. These results in Table B6 are very similar to

those in Table 14. Therefore, our results are not driven by the exclusion of “routine” trades.

In conclusion, the results in this section provide additional validations for DES as a
measure of relative mispricing between debt and equity markets from the perspective of

corporate decisions.

5 Conclusion

In a structural model with no arbitrage, stocks and bonds of the same firm are expected
to be priced consistently because both are contingent claims on the same underlying asset.
In the data, the equity and debt markets can be segmented and disintegrated because of

limits to arbitrage, generating a valuation gap. In this study, we propose a firm-level measure

years.
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of valuation gap between equity and debt, the debt-equity spread (DES), and examine its

implications for asset prices and corporate decisions.

Four main findings are worth emphasizing. First, DES predicts stock returns negatively
but bond returns positively, which indicates that a higher DES is likely to be associated with
an overvaluation in the stock price and undervaluation in the bond price. Second, firms with
higher DES have high analyst-forecasted long-term earnings growth, which is then revised
downward by subsequent negative surprises, suggesting that investors are over-optimistic
about the prospect of high DES firms. Third, the return prediction of DES is stronger among
stocks and bonds with higher limits to arbitrage. Fourth, firms with higher DES are followed

by more equity issuance and debt retirement, and more stock sales by insiders.

This collective evidence indicates that our valuation gap measure, DES, is more likely
to capture the relative mispricing between debt and equity, although we cannot completely
rule out all risk-based explanations. This simple measure, which integrates information
from equity and bond markets, can be of interest to researchers and institutions in studying
relative mispricing cross-market. Extending the structural model to take into account jump
risks (see e.g., Bai et al., 2020), secondary-market liquidity (see e.g., Chen et al., 2018) and
more detailed information about the capital structure (such as debt seniority, callability, or
maturity structure, as in Chen et al., 2021) could further improve the quality of valuation

gap measure. We leave this agenda for our future study.
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Figure 1: Performance of the extended CreditGrades model

Panel A plots the model implied credit spreads against actual credit spreads across five quintile
portfolios sorted by actual credit spreads. Firm-level credit spreads (for both actual and implied)
are computed as the bond market value weighted average credit spreads across all bonds within a
firm. Portfolio-level credit spreads (for both actual and implied) are computed as the equity market
value weighted average credit spreads across all firms within a portfolio. Panel B plots the histogram
of portfolio-level DES. The sample ranges from January 1980 to December 2020.
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Figure 2: Times series of DES distribution

This figure plots the time series of median, 25th percentile, and 75th percentile of portfolio-level
DES. The gray bars represent NBER recessions. The sample ranges from January 1980 to December
2020.
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Figure 3: Cumulative returns of DES long-short portfolios

This figure plots the time series of the balance of $1 invested in the long-short DES portfolio at the
beginning of 1980 for both the value-weighted (VW) scheme and equally-weighted (EW) scheme.
The top panel is for the stock portfolios and the bottom panel is for the bond portfolios. The gray
bars represent NBER recessions.
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Figure 5: Cumulative returns of DES capital structure arbitrage portfolios

This figure plots the time series of the balance of $1 invested in the long-short DES capital structure
arbitrage portfolio at the beginning of 1980 for both the value-weighted (VW) scheme and equally-
weighted (EW) scheme. For each bond, we compute the return of a hedged position that buys the
bond and short-sells the stock of the same firm using the estimated hedge ratio. We compute the
average hedged returns for each DES quintile and plot the cumulative return of the long-short DES
portfolio. The gray bars represent NBER recessions.
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Table 1: Variable Definitions

This table contains the definitions and descriptions of the variables used in the paper.

Variable

Definition

Panel A. Firm characteristics

Idiosyncratic volatility (Ivol)

Financial leverage (MLev)

Failure probability (FP)

Momentum (Mom)

Asset growth (AG)

Mispricing score (MispScore)

Monthly dollar volume (Dvol)

Days to cover (DOC)

Equity lending fee (SAF)

Analyst forecast dispersion (FDisp)

Standard deviation of the regression residuals of daily stock
excess returns on the Fama and French (1992) factor model
(Source: CRSP)

Ratio of total debt (sum of Compustat items DLC and DLTT)
to asset market value (sum of Compustat items DLC and
DLTT and market cap at the December of the same year)
(Source CRSP and Compustat)

Probability of a firm going bankrupt or delisted, based on
Campbell et al. (2008) (Source: CRSP and Compustat)

Prior 2-12 month cumulative returns (Source: CRSP)

Growth rate of total asset (Compustat item AT) from the
previous year (Source: Compustat)

Firm-level mispricing measure from Stambaugh et al. (2012)

Month-end price times trading volume during that month

(Source: CRSP)

Number of shares sold short in the month divided by average
trading volume (Source: SEC)

12-month moving average of simple average fee (Source:
Markit)

The standard deviation of forecasted earnings per shares in
June of each year divided b stock price at the end of June
(Source: IBES.)

Panel B. Bond characteristics

Amihud’s liquidity

Monthly dollar volume (Dvol)

gamma

the median value of absolute changes in daily bond prices
divided by trade volume each month (Source: TRACE)

Month-end price times trading volume during that month
(Source: TRACE)

the negative of autocorrelation between prices (Bao et al.,
2011) (Source: TRACE)
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Number of trading days

the number of days that a bond has been traded within a
month (Source: TRACE)

Panel C. Corporate Activities and Insider Trading

Net equity issues

Net debt issues

Insider sales

Log(BA)

Profitability

Tangibility

Cash holding

Market-to-Book Equity (ME/BE)

Market leverage (MLev)

Equity issuance (Compustat item SSTKQ) minus equity
repurchase (PRSTKCQ), divided by total assets (ATQ) of
the previous quarter (Source: Compustat)

Short-term debt change (Compustat item DLCCQ) plus
long-term debt net issuance (DLTISQ - DLTRQ), divided by
total assets (Compustat item ATQ) of the previous quarter
(Source: Compustat)

The ratio of shares sold to total number of shares traded
by insiders each month (Source: Thomas-Reuters Insider
Filings)

Logarithm of total assets (item AT) (Source: Compustat)

Operating incomes divided by total assets of last period
(OIBDP/AT) (Source: Compustat)

Property, plants and equipments divided by total assets
(PPENT/AT) (Source: Compustat)

cash and short term investments (CHE), divided by total
assets (AT) of the previous year (Source: Compustat)

The ratio of the market value of equity to its book value
(Source: Compustat)

Total debt divided by the sum of debt and equity ((DLC +
DLTT)/(PRCCxCSHO + DLC + DLTT))
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Table 2: Summary statistics of debt-equity spread quintile portfolios

This table reports summary statistics of the characteristics of quintile portfolios sorted by debt-
equity spread (DES). Panel A reports the average number of stocks, average DES and the inputs in
computing it, including CS®, CSP, asset volatility (Avol), leverage ratio (Lev), payout rate (Payout),
and bond maturity for each of the DES quintiles. Panel B reports other firm characteristics, including
idiosyncratic volatility (Ivol), market leverage ratio (Mlev), failure probability (FP), firm size (Size,
in billion dollars), book-to-market equity ratio (BM), momentum (Mom), gross profitability (GP),
asset growth (AG), Amihud illiquidity (Illiq), dollar volume (Dvol, in billion dollars), days to
cover (DTC), the equity lending fee, measured by simple average fee from Markit (SAF), analyst
forecast dispersion (FDisp), and mispricing score (MispScore) from Stambaugh, Yu, and Yuan
(2012). A portfolio’s average value of each characteristic is computed as the time series mean of the
cross-sectional median for that portfolio. The sample is from January 1980 to December 2020.

Panel A. DES and its inputs

L(ow) 2 3 4 H(igh)
N 49.36 44.97  44.07  45.43 48.72
DES —61.64 64.12 109.09 154.77 251.69
CsE 318.71  71.67  34.14  29.76  52.76
CsP 225.67 135.23 145.76 191.04 330.93
Avol 0.17 0.18 0.19 0.19 0.20
Lev 0.50 0.30 0.27 0.28 0.32
Payout 0.06 0.04 0.04 0.04 0.04
Maturity 9.06 11.10 11.28 10.71 9.30
Panel B. Firm characteristics
L(ow) 2 3 4 H(igh)
Ivol 1.684 1.340 1.313 1.396 1.613
Mlev 0.476 0.271 0.251 0.268 0.333
FP —-7.599 —8.043 —8.102 —8.066 —7.915
Size 3.573 9.117 7.405 4.430 2.063
BM 0.755 0.595 0.561 0.581 0.653
Mom 0.051 0.098 0.115 0.118 0.104
GP 0.212 0.273 0.293 0.287 0.258
AG 0.046 0.065 0.065 0.062 0.060
Iliq 0.002 0.001 0.001 0.002 0.004
Dvol 6.549 12.996 11.037 7.090 3.208
DTC 4.088 3.320 3.446 3.937 5.000
SAF 29.067  28.318 28.168 28.389 29.704
FDisp 0.004 0.002 0.002 0.002 0.003
MispScore  49.361 44.972 44.068 45.426 48.720
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Table 3: Average returns and alphas

This table reports average annualized excess returns and abnormal returns for stocks and bonds.
In Panel A, we form stock quintile portfolios based on the firm-level debt-equity spread (DES) of
the previous month, and then estimate the stock alphas from CAPM, Fama and French (1992)
3-factor model (FF3), Carhart 4-factor model (C4), Fama and French (2015) 5-factor model (FF5),
Stambaugh and Yuan (2017) mispricing-factor model (M4), and Hou, Xue, and Zhang (2015)
g-factor model (HXZ). In Panel B, we form the bond quintile portfolios based on the bond-level
DES of the previous month, and then estimate the one-factor bond alphas, o/™*, by regressing
excess bond returns on an intercept and the market bond returns (proxied by the Merrill Lynch
Index), and the four-factor bond alphas o*f, by regressing the excess bond returns on an intercept
and four bond factors proposed by Bai et al. (2019). The sample is from January 1980 to December
2020, except for the bond four-factor model tests, where the sample period is from July 2004 to
December 2019 due to the availability of the Bai et al. (2019) factors. We report the results using
both value-weighted (VW) scheme and equally-weighted (EW) scheme. The Newey-West ¢-statistics
given in parentheses control for heteroskedasticity and autocorrelation based on a lag of 12.

Panel A: Stock returns

VW Returns
L(ow) 2 3 4 H(igh) L-H
mean 12.29  9.50 6.76 7.39 4.57 7.72
(4.56) (4.42) (3.05) (2.76)  (1.55) (4.29)
aCAPM 375 199  —0.79 —0.39 —4.36  8.10
(2.60) (2.04) (—0.83) (—0.36) (—2.80) (4.13)
af 3 255 1.73 —081 —0.77 —=5.12  7.67
(1.87) (1.80) (—0.86) (—0.73) (—3.62) (3.59)
aft 4.06 219 —0.70 —0.91 —4.22 828
(3.38) (1.97) (—0.70) (—0.85) (—2.73) (3.83)
af'Fs 1.70 054 —274 —283 —551  7.20
(1.20) (0.50) (—3.33) (—2.46) (—3.59) (3.11)
aM4 322 149 —-184 -1.70 —3.87 7.0
(1.80) (1.24) (—1.79) (—1.14) (—2.09) (2.45)
afiXz 258 059 —1.32 —1.79 —3.46 6.04
(1.57) (0.47) (—1.27) (—1.23) (—1.68) (2.11)

EW Returns
L(ow) 2 3 4 H(igh) L-H
mean 14.99 11.57  8.55 9.08 7.06 7.93
(4.67) (5.05) (3.69)  (3.49) (2.27) (4.33)
aCAPM 491 3.19 0.55 0.39 —-324 815
(2.26) (2.29) (0.40)  (0.31) (—1.60) (4.19)
af F3 3.08 210 —-021 —063 —477 7.85
(1.89) (1.85) (—0.19) (—0.66) (—2.97) (3.66)
att 583  3.31 0.48 0.08 —-2.40  8.23
(3.92) (3.09) (0.52)  (0.10) (—1.60) (3.72)
af'Fb 200 041 —244 —283 —5.22 721
(1.26) (0.37) (—2.67) (=3.01) (—3.07) (3.59)
aM4 6.33 218 —0.86 —1.35 —193 8.26
(2.96) (1.68) (—0.80) (—0.97) (—1.09) (3.21)
afX2 485 128 —1.34 —1.49 —2.07 6.92
(2.27) (0.82) (—0.95) (—1.04) (—0.85) (2.58)

42



Panel B: Bond returns

VW Returns
L(ow) 2 3 4 H(igh) L-H
mean 2.42 3.36 4.23 4.84 7.39 —4.97
(1.78) (2.57) (347) (4.01) (5.74) (-5.41)
a™kt 175 —1.04 —0.09 0.72 3.39 —5.13
(=3.12) (—=2.17) (-0.21) (1.74) (4.96) (—5.86)
atf —1.03 0.04 0.87 0.92 1.83 —2.86
(—1.66) (0.08)  (1.43) (1.66) (1.82) (—2.05)
EW Returns
L(ow) 2 3 4 H(igh) L-H
mean 2.30 3.10 4.20 5.04 8.65 —6.35
(1.73) (2.31) (3.47) (4.26) (6.03) (—6.37)
a™kt 171 —-1.15 —0.05 0.93 4.63 —6.35
(=3.05) (—2.24) (-0.15) (2.63) (6.19) (—6.70)
atf —0.89 —0.12 0.60 1.16 2.15 —3.04
(—1.36) (—0.24) (1.18) (2.01) (2.34) (—2.31)
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Table 4: Subsample analysis

This table reports the average annualized excess returns and abnormal returns of DES stock
portfolios (Panel A) and bond portfolios (Panel B) for the subperiods of 1980— 1999 and 2000-2020.
In Panel A, we form stock quintile portfolios based on the firm-level debt-equity spread (DES) of
the previous month, and then estimate the stock alphas from CAPM, Carhart 4-factor model (C4),
and Stambaugh and Yuan (2017) mispricing-factor model (M4). In Panel B, we form bond quintile
portfolios based on the bond-level DES of the previous month, and then estimate the one-factor
bond alphas, a/™*, by regressing excess bond returns on an intercept and the market bond returns
(proxied by the Merrill Lynch Index), and the four-factor bond alphas a*", by regressing the excess
bond returns on an intercept and four bond factors in Bai et al. (2019) for the period of July
2004 to June 2019. The full samples are described in Table 3, with the end of 1999 as the the
cutoff date for the two subsamples. We report the results using both value-weighted (VW) scheme
and equally-weighted (EW) scheme.The Newey-West t-statistics given in parentheses control for
heteroskedasticity and autocorrelation based on a lag of 12.

Panel A: Stock portfolios

VW Returns from 1980 to 1999
L(ow) 2 3 4 H(igh) L-H
mean 13.34  10.88 8.49 10.83 5.61 7.74
(4.41) (3.99) (2.80) (3.17) (1.78)  (3.37)

aCAPM 315 1.37 —1.65 0.34 —4.85 8.01
(1.73) (0.81) (—1.25) (0.23) (—2.84) (3.35)

ac? 2.76 1.27 —1.16 0.05 —5.62 8.37
(1.72) (0.61) (—0.80) (0.03) (—3.42) (3.27)

M4 3.61 0.10  —3.22 -199 —7.14 10.76

(2.03)  (0.04) (—2.08) (—1.04) (—3.01) (3.39)

VW Returns from 2000 to 2020
L(ow) 2 3 4 H(igh) L-H
mean 11.28  8.19 5.11 4.12 3.57 7.71
(2.55)  (2.51)  (1.58) (1.05) (0.73)  (2.73)
aCAPM 447 251 —-0.27 —-139 —-365 812
(2.09) (2.03) (—0.22) (-0.96) (—1.52) (2.70)

a0t 525 307 010  —138 —338 8.63
(3.17) (2.31)  (0.08) (—0.98) (—1.43) (2.68)
o M4 514 274 —031 —141 —161 6.75

(1.98) (1.60) (—0.22) (—0.69) (—0.52) (1.46)

EW Returns from 1980 to 1999
L(ow) 2 3 4 H(igh) L-H
mean 13.18 10.85  8.80 10.52 5.86 7.32
(3.97) (3.79) (2.86)  (3.06)  (1.73) (3.27)
aCAPM 990 071 —156 —0.47 —5.21 741
(1.06) (0.45) (—1.15) (—0.38) (—2.36) (3.27)

€t 3.38 137 —047 —033 —4.17 7.55
(2.32) (0.95) (—0.39) (—0.27) (—2.33) (2.95)
aM4 443 038 —166 —2.73 —5.82 10.25

(2.82) (0.25) (—1.07) (—2.14) (—2.87) (3.87)
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EW Returns from 2000 to 2020

Liow) 2 3 4 H(igh) LH

mean 16.72 1226 832 7.71 821 851
(3.10) (3.46) (2.43) (2.01) (1.60)  (2.97)

aCAPM 806 564 238  1.13 —0.72 878
(2.17)  (2.49) (1.16) (0.57) (—0.23) (2.91)

act 8.58 5.85 2.44 1.13 —0.31 8.89
(4.35) (3.97) (2.11) (1.07) (-0.14) (2.93)

aM4 11.39  5.78  2.01 1.07 2.74 8.65

(3.40)  (2.60) (1.73) (0.71) (1.08) (2.14)

Panel B: Bond portfolios

VW Returns from 1980 to 1999

L(ow) 2 3 4 H(igh) L-H
mean 2.04 2.58 3.45 3.80 6.36 —4.32

(0.91) (1.11)  (1.60)  (1.82) (3.67) (—4.11)
a™kt 171 —-1.50 —0.56  0.10 3.16 —4.86

(=347) (—4.70) (=2.05) (0.19) (4.17) (-5.72)

VW Returns from 2000 to 2020

L(ow) 2 3 4 H(igh) L-H
mean 2.78 4.10 4.96 5.82 8.36 —5.58

(1.83)  (3.24)  (4.29) (4.74) (4.48) (—3.92)
amkt —1.51 —0.14 0.83 1.59 3.31 —4.82

(—1.52) (—0.20) (1.35) (3.25) (2.88) (—3.27)

EW Returns from 1980 to 1999

L(ow) 2 3 4 H(igh) L-H
mean  1.68 2.41 3.68 431  7.01 —5.33

(0.77)  (1.02)  (1.70)  (2.10) (3.79) (—5.30)
Q™ 190 —1.57  —028 0.60 3.81 —5.71

(=3.57) (=4.07) (—1.01) (1.27) (5.14) (—6.16)

EW Returns from 2000 to 2020

L(ow) 2 3 4 H(igh) L-H
mean 2.89 3.76 4.68 5.73 10.20 —7.32

(1.91) (2.90)  (4.05) (4.65) (4.81) (—4.59)
amkt —1.31 —0.25 0.63 1.56 5.10 —6.41

(-1.34)  (-0.35) (1.31) (3.62) (4.14) (—4.26)
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Table 5: Fama-MacBeth regressions

This table reports the results from monthly Fama-MacBeth return predictive regressions. In Panel
A, we run cross-sectional regression of stock returns on the firm-level debt-equity spread (DES)
and firm characteristics, such as idiosyncratic volatility (Ivol), market leverage ratio (Mlev), failure
probability (FP), firm size (Size, in billion dollars), book-to-market equity ratio (BM), momentum
(Mom), gross profitability (GP), asset growth (AG), tangibility, and Stambaugh, Yu, and Yuan
(2012) mispricing score (MispScore). In Panel B, we run bond returns on the bond-level DES, firm
characteristics and bond characteristics, such as logarithm of bond size, amount outstanding, age,
and coupon payment. The Newey-West t-statistics given in parentheses control for heteroskedasticity
and autocorrelation based on a lag of 12. The sample is from January 1980 to December 2020,
except for Specifications 7 and 8, which ends on December 2016 due to the data availability of
MispScore.

Panel A: Stock returns

1 2 3 4 5 6 7 8

Intercept 1.34 —-0.24 1.33 1.23 1.00 0.31 2.36 1.47
(6.49) (-0.20) (2.67) (4.25) (1.79) (0.29) (8.75) (1.32)

DES —0.16 —-0.17 —0.16 —0.18 —-0.18 -0.19 —0.20 —0.23
(—4.45) (-5.65) (-—5.01) (—4.88) (-5.38) (—6.66) (—5.33) (—6.44)

Ivol —0.07 —0.11 —-0.13
(—0.91) (—1.54) (—1.66)

Mlev 0.37 —0.05 0.10
(1.13) (—0.14) (0.26)

FP —0.18 —0.16 —0.18
(—1.33) (—1.21) (—1.34)

logSize —0.05 —0.05 —0.09 —0.14
(—1.06) (-1.18) (-2.11) (—3.54)

BM 0.15 0.31 0.31 0.26
(1.27) (2.42) (2.26) (1.96)

Mom 0.35 0.24 0.27 0.14
(0.95) (0.67) (0.84) (0.42)

GP 0.52 0.98 0.83 0.58
(2.01) (3.15) (2.65) (1.99)

AG —0.55 -0.39 —0.48 0.05
(—=2.83) (—2.50) (—3.53) (0.21)

Tangibility 0.07 0.02 —0.03 0.13
(0.29) (0.11)  (-0.12) (0.60)

MispScore —0.02 —0.02
(—=3.94) (-2.80)

Adj. R? 1.50 7.44 8.09 5.13 11.08 14.60 3.01 15.08
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Panel B: Bond returns

1 2 3 4 5 6 7 8
Intercept 0.28 0.48 0.13 0.40 —0.56 —-1.24 0.34 0.36
(2.62) (1.65) (0.61) (1.15)  (—1.34) (—2.55) (2.52) (0.87)
DES 0.13 0.16 0.16 0.18 0.12 0.13 0.14 0.19
(5.20)  (5.93) (5.64) (5.86) (5.13) (5.29) (5.29) (5.49)
Tvol —0.03 —0.01 -0.07 —0.03
(—0.80) (—0.36) (—2.03) (—0.78)
Mlev 0.42 0.51 0.28 0.44
(4.76) (3.76) (2.74) (3.07)
FP 0.04 0.10 —0.03 0.09
(1.04) (2.16) (—0.95) (1.85)
logSize 0.01 0.05 0.06 0.05
(0.50) (2.78) (3.37) (2.60)
BM 0.11 0.05 —0.03 0.08
(2.26) (1.23) (—0.78) (1.74)
Mom 0.13 0.20 0.29 0.26
(1.39) (3.72) (4.48) (4.66)
GP —0.07 0.08 0.07 0.09
(-0.87)  (1.30) (1.18) (1.23)
AG —0.14 —0.13 —0.04 —0.15
(—2.92) (—2.83) (—1.09) (—2.80)
Tangibility —0.09 —0.12 —0.08 —0.12
(—1.86) (—2.68) (—1.81) (—2.33)
MispScore —0.00 —0.00
(—=0.98) (-0.18)
logBondSize —2.37 -3.30
(—3.89) (—4.42)
Amount 2.40 3.29
(3.88) (4.44)
Age 0.00 —0.00
(0.36) (—0.16)
Coupon 0.05 0.10
(1.93)  (3.46)
Maturity 0.01 0.00
(1.46) (0.42)
Adj. R? 2.43 9.53 9.45 13.56 13.56 26.85 4.06 13.83
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Table 6: Fama-MacBeth regressions on extended CreditGrades model inputs
This table reports the results from monthly Fama-MacBeth return predictive regressions with the
inclusion of the extended CreditGrades model inputs. In Panel A, we run cross-sectional regression
of stock returns on the firm-level debt-equity spread (DES) and CreditGrades model input variables,
such as asset volatility (Avol), leverage ratio (Lev), payout ratio (Payout), equity implied credit
spread CSP, and actual credit spread CSP. In Panel B, we run bond returns on the bond-level
DES, the above-mentioned firm characteristics, and bond maturity, an indicator for callable bonds,
and bond-level equity implied credit spread CSF and actual credit spread CSP. The Newey-West
t-statistics given in parentheses control for heteroskedasticity and autocorrelation based on a lag of
12. The sample is from January 1980 to December 2020.

Panel A. Stock returns

1 2 3 4 5 6 7 8 9
Intercept 1.34 1.80 0.84 0.90 1.65 0.98 1.27 1.18 1.27
(6.49) (6.21) (4.54) (3.98) (3.68) (5.44) (7.93) (7.45) (7.90)
DES —0.16 —0.15 —0.20 —0.18
(—4.45) (—4.29) (—3.75) (—3.95)
AVol —3.37 —2.77
(—2.78) (—1.76)
Lev 0.78 —0.08
(1.55) (=0.10)
Payout 5.74 1.37
(3.30) (0.70)
CSE 0.08 —0.02
(1.53)  (—0.30)
CcsP —0.05 —0.02
(—=0.90) (—0.25)
Adj. R? 1.50 2.26 2.33 0.70 7.08 3.32 4.98 3.72 4.94
Panel B. Bond returns
1 2 3 4 5 6 7 8 9 10 11
Intercept  0.28 0.27 0.38 0.32 0.30 0.36 —-0.27 0.38 0.07 0.11 0.07
(2.62) (2.31) (3.62) (3.07) (4.06) (3.51) (—1.38) (3.88) (0.60) (0.97) (0.62)
DES 0.13 0.15 0.23 0.12
(5.20) (5.81) (6.28) (5.52)
AVol 0.64 0.80
(2.37) (1.85)
Lev —0.01 0.56
(—0.05) (1.75)
Payout 1.35 2.43
(2.86) (4.07)
Maturity 0.01 0.01
(2.80) (2.09)
Call 0.03 —0.04
(1.26) (—1.75)
CSE —0.00  0.11
(—0.12) (3.32)
CcsP 0.14  0.11
(4.31) (3.27)
Adj. R? 2.43 1.07 3.11 0.78 8.71 0.79 18.18 4.34 10.55 9.19  10.55
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Table 7: Long-term earnings growth forecast revisions

This table examines the relation between debt-equity spread (DES) and long-term earnings growth
forecasts (LTG), which are obtained from the Institutional Brokers Estimate System (IBES)
Summary unadjusted file. Panel A reports the average LTG for the DES quintiles. Panel B reports
the coefficients of DES in the Fama-MacBeth regressions in predicting future 12-, 24-, 36-, 48-,
60-month cumulative changes in LTG. The Newey-West t-statistics given in parentheses control for
heteroskedasticity and autocorrelation based on a lag of K+2, where K is the predictive horizon.
The data is from January 1981 to December 2020.

Panel A: Average LTG
L(ow) 2 3 4 H(igh)
LTG 10.21 11.59 11.68 12.12 12.73

Panel B. FMB of future LTG changes on DES
(K=) 12 24 36 48 60
DES  —0.00 —0.15 —0.21 —0.28 —0.32
(—=0.04) (—-2.58) (-3.35) (-3.31) (-3.02)
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Table 8: The role of limits to arbitrage: Stock portfolios

This table reports the average annualized value-weighted excess returns and Carhart 4-factor model
abnormal returns of the debt-equity spread (DES) portfolios, conditional on different levels of limits
to arbitrage. Each month we sequentially sort firms into 3-by-3 portfolios based on proxies of limits
to arbitrage and DES. The measures of limits to arbitrage include firm size, Amihud illiquidity
(Amihud, 2002), dollar volume, days to cover, equity lending fee, and analyst forecast dispersion.
The Newey-West t-statistics given in parentheses control for heteroskedasticity and autocorrelation
based on a lag of 12. The sample is from January 1980 to December 2020 for firm size, illiquidity,
and dollar volume, from May 1998 to February 2018 for days to cover, and from January 2008 to
December 2020 for equity lending fee.

Panel A. Size

Excess returns Carhart 4-factor alphas
L(ow) M(id) H(igh) L-H L(ow) M(id) H(igh) L-H
Low 15.03 9.54 7.78 7.25 3.83 -1.39 —3.42 7.24
(4.71) (3.46) (2.36) (3.94) (2.48) (-1.39) (—2.07) (3.03)
Mid 11.95  8.97 7.70 4.25 2.75 0.21 —2.13 4.88
(4.71) (3.88) (2.94) (3.54) (2.32) (0.18) (—1.83) (3.68)
Hi 10.57  7.15 6.84 3.74 3.45 —0.18 —0.34 3.79

(442) (3.40) (2.60) (2.55) (3.00) (—0.17) (—0.36) (2.44)

Panel B. Illiquidity
L(ow) M(d) H(igh) L-H L(ow) M(id) H(igh) L-H

Low 1027 737 625 402 288 —003 —141  4.29
(4.07) (3.62) (249) (2.88) (2.53) (—0.03) (—1.52) (2.67)

Mid 1227 945 729 498 369 151 168  5.37
(4.84) (3.98) (2.61) (2.91) (2.91) (1.17) (—1.59) (3.41)

Hi 1477 911 743 733 572 —033 -250 821

(4.33)  (3.33) (2.37) (3.39) (3.06) (—0.29) (—1.63) (3.09)

Panel C. Dollar volume
L(ow) M(d) H(igh) L-H L(ow) M(id) H(igh) L-H

Low 1618 9.17 737 88l 674 037  —201 875
(5.39) (3.68) (2.56) (4.94) (3.78) (0.28) (—1.35) (3.64)
Mid 1181 9.17 856 325 410 147  —040 450
(5.06) (4.07) (3.31) (2.34) (3.54) (1.24) (—0.44) (3.45)
Hi 1019 733 603 416 261  —0.18 —167  4.28

(4.06) (3.48) (2.30) (2.80) (2.41) (=0.17) (—=1.62) (2.60)

Panel D. Days to cover
L(ow) M(id) H(igh) L-H L(ow) M(id) H(igh) L-H

Low 922 564 671 252 396 126 246  1.50
(2.20) (1.68) (1.77) (0.83) (2.29) (0.84)  (1.28)  (0.54)
Mid  9.62 432 275  6.87 439 019 —243  6.82
(2.66) (1.36) (0.71) (3.10) (2.58) (—0.18) (—1.30) (2.60)
Hi 1066 272 225 841 438 —323 —444 882

(221)  (0.65) (0.41) (2.04) (1.64) (—1.66) (—1.59) (1.84)
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Panel E. Equity lending fee

L(ow) M(id) H(igh) L-H L(ow) M(id) H(igh) L-H
Low 13.72 10.21 10.81 2.91 3.16 0.32 0.39 2.77
(3.29) (2.45) (2.27) (1.57) (2.19) (0.20) (0.21) (1.24)
Mid 15.32 7.35 6.32 9.00 6.66 —2.02 —4.47 11.13
(3.90) (1.89) (1.27) (3.20) (3.58) (—1.36) (—2.44) (3.60)
Hi 17.14 8.50 3.92 13.22 6.86 —0.98 —7.24 14.10
(3.27) (1.97) (0.64) (3.61) (2.11) (-0.70) (—2.85) (2.97)
Panel F. Forecast dispersion
L(ow) M(d) H(igh) L-H L(ow) M(id) H(igh) L-H
Low  11.70 8.38 9.38 2.32 5.16 1.52 0.99 4.17
(5.24) (3.84) (3.52) (1.48) (3.25) (1.99) (0.60) (2.05)
Mid 11.05 5.29 6.03 5.01 3.04 —2.52 —1.86 4.90
(3.81) (2.08) (2.27) (2.94) (2.09) (—2.20) (-1.69) (2.69)
Hi 11.07 4.35 4.57 6.50 2.31 —4.43 —4.92 7.23
(3.62) (1.39) (1.32) (2.52) (1.16) (—2.32) (—2.60) (2.56)
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Table 9: The role of limits to arbitrage: Bond portfolios

This table reports the average annualized value-weighted excess returns and Bai et al. (2019) 4-factor
model abnormal returns of the debt-equity spread (DES) portfolios, conditional on levels of limits to
arbitrage. Each month we sequentially sort bonds into 3-by-3 portfolios based on proxies of limits
to arbitrage and DES. The measures of limits to arbitrage include bond size, Amihud illiquidity,
dollar volume, gamma (Bao et al., 2011), and number of trading days each month. The Newey-West
t-statistics given in parentheses control for heteroskedasticity and autocorrelation based on a lag
of 12. The sample is from January 1980 to December 2020 for bond size, Amihud illiquidity, and
dollar volume, from August 2002 to December 2020 for Amihud illiquidity and bond gamma. All
4-factor model tests are performed between July 2004 and June 2019 due to data availability.

Panel A. Bond size

Excess returns 4-factor alphas
L(ow) M(id) H(igh) L-H L(ow) M(d) H(igh) L-H
Low 1.96 4.59 8.99 —7.03 —0.52 0.74 2.38 —2.90
(1.36) (3.76) (5.78) (—5.63) (—0.90) (1.65) (2.63) (—2.40)
Mid 2.71 4.00 6.35 —3.64 —0.50 0.74 1.69 —-2.20
(2.04) (3.30) (5.62) (-5.94) (-1.37) (1.28) (1.80) (-2.12)
Hi 3.07 4.02 5.20 —2.13 —0.80 0.58 0.83 —1.63

(2.37)  (3.21) (4.42) (—4.17) (-1.90) (1.05) (1.32) (—1.79)

Panel B. Bond illiquidity
L(ow) M(id) H(igh) L-H L(ow) M(d) H(igh) L-H

Low 454 490 676 —221  —052 080 073 —1.25
(3.41) (4.06) (3.95) (—2.71) (—1.17) (1.81) (1.25) (—1.54)

Mid 422 515 731  —3.09 —049 077 131  —1.80
(3.08) (3.92) (4.18) (—3.03) (—142) (1.24) (1.38) (—1.82)

Hi 337 544 950 —614 —175 060 278  —4.53

(2.11)  (3.62) (4.70) (—4.57) (—=3.27) (1.05) (2.39) (—3.13)

Panel C. Bond dollar volume
L(ow) M(id) H(igh) L-H L(ow) M(id) H(igh) L-H

Low 285 503 88  —6.02 —1.52 097 306 —458
(1.97)  (3.79) (4.73) (—4.46) (—2.74) (1.76) (2.94) (—3.39)
Mid 428 469 699 —270 —044 055 122  —167
(3.29) (3.80) (4.29) (—3.73) (—1.25) (1.04) (1.44) (—1.78)
Hi 458 538 722 —264 —057 083 061 —118

(3.33)  (4.04) (3.91) (-2.57) (-1.26) (1.51) (0.83) (—1.19)

Panel D. Bond gamma
L(ow) M(id) H(igh) L-H L(ow) M(d) H(igh) L-H

Low 3.62 380 599 —236 —009 084 149  —157
(3.35) (3.98) (4.46) (—4.09) (—0.26) (1.88) (2.57) (—2.51)

Mid 436 558  7.37  —3.02 —090 080 200 —291
(3.14) (3.98) (4.47) (—3.46) (—=2.17) (1.25) (2.47) (—2.86)

Hi 580 704 1114 —534 —112 017 119  —231

(2.99) (3.70) (3.80) (—2.90) (—1.39) (0.24) (0.97) (—1.46)

Panel E. Number of tradedays
L(ow) M(id) H(igh) L-H L(ow) M(d) H(igh) L-H

Low 371 548 880 —509 —1.38 060 289  —4.26
(2.52) (3.68) (4.51) (—4.19) (—3.11) (0.99) (2.34) (—3.18)
Mid 398 489 749  —351  —092 046 135 = —2.27
(2.81) (3.64) (4.35) (—3.32) (—2.04) (0.85) (1.72) (—2.30)
Hi 442 520 703 —260 —051 096 071  —123

(3.29) (4.11) (3.96) (-2.74) (—106) (1.83) (0.94) (—1.17)
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Table 10: Bond illiquidity and stock DES premiums

This table reports the average annualized value-weighted excess returns and Carhart 4-factor model
abnormal returns of the debt-equity spread (DES) portfolios, conditional on different levels of
average bond illiquidity. Each month we sequentially sort firms into 3-by-3 portfolios based on
proxies of bond limits to arbitrage and DES. The measures of bond illiquidity include Amihud
illiquidity (Amihud, 2002), dollar volume, and tradedays. The Newey-West t-statistics given in
parentheses control for heteroskedasticity and autocorrelation based on a lag of 12. The sample is
from August 2002 to December 2020.

Panel A. Bond Amihud illiquidity
L(ow) M(id) H(igh) L-H L(ow) M(id) H(igh) L-H

Low 15.65 1028 7.10 854 494 051  —3.82 8.76
(4.23) (2.74) (1.34) (2.91) (2.61) (0.39) (—1.20) (2.01)
Mid 1184 737 543 641 203 -130 —3.82 585
(3.38) (2.53) (1.37) (2.95) (1.13) (—1.32) (—1.93) (1.98)
Hi 1095 736 7.69 327 226 —1.87 —227 453

(3.40) (2.38) (1.84) (1.34) (1.73) (=1.31) (—1.05) (1.84)

Panel B. Bond dollar volume
L(ow) M(d) H(igh) L-H L(ow) M(id) H(igh) L-H

Low 984 904 857 127 082 012  —136 2.19
(3.05) (3.03) (1.95) (0.54) (0.69) (0.09) (—0.68) (1.07)
Mid 1239 798 571  6.68 3.03 —1.07 —442 745
(3.87) (2.58) (1.21) (2.18) (1.46) (—0.94) (—1.91) (2.15)
Hi 1417 971 648 770 4.00 006  —3.82  7.82

(3.40) (3.20) (1.46) (2.94) (227) (0.05) (—1.52) (2.06)

Panel C. Bond tradedays
L(ow) M(id) H(igh) L-H L(ow) M(id) H(igh) L-H

Low 11.57 923 807 350 282 037  —1.79 461
(3.44) (2.77) (1.81) (1.54) (1.62) (0.25) (—0.75) (1.97)

Mid 1229 888 654 575 3.09 —012 —346  6.55
(3.78) (3.09) (1.53) (2.69) (1.97) (—0.10) (—1.79) (2.57)

Hi 1556 962 571 984 515 —0.18 —421  9.36

(3.74) (2.83) (1.35) (3.73) (2.75) (—0.18) (—2.08) (2.63)
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Table 11: Risk factor exposures of DES portfolios

This table reports the factor exposures of DES stock and bond portfolios. These factors include the
change in monthly common idiosyncratic volatility from Herskovic et al. (2016) (dCIV), change in the
monthly variance in daily market returns (AMVAR), change in monthly VIX index (dVIX), jump risk
(Jump), measured as the change in the implied volatility of the deep out-of-the-money Standard and
Poor’s (S&P) 500 put options following Benzoni et al. (2011), two measures of investment-specific
technology shocks, i.e., investment-minus-consumption portfolio return (IMC) from Kogan and
Papanikolaou (2014) and the negative change in equipment price relative to nondurable consumption
goods price (Ishock), and change in 10-year government bond yield (dYld). For each of these factors,
we test the DES portfolios on a two-factor model with this factor along with the market factor and
report its coefficient. The Newey-West t-statistics given in parentheses control for heteroskedasticity
and autocorrelation based on a lag of 12. Panel A reports the results for DES stock portfolios and
Panel B reports the results for DES bond portfolios. The data are monthly from January 1980 to
December 2020 for dCIV, dMVAR, IMC, and dYld, monthly from March 1990 to December 2020
for dVIX, monthly from January 1996 to December 2020 for Jump, and annual from 1980 to 2020
for Ishock.

Panel A. Stock returns

L(ow) 2 3 4 H(igh) L-H

dCIV 0.36 0.25 —0.30 —0.77 —1.39 1.75
(0.98)  (0.80) (—1.48) (—2.22) (—4.83) (3.82)

dMVAR 0.06 0.04 —0.02 —0.12 —-0.12 0.18
(1.56)  (1.99) (—1.13) (=3.67) (=3.77) (4.29)

dVIX —0.06 —0.09 —0.03 —0.04 —0.07 0.02
(—1.24) (—2.80) (—0.94) (—1.00) (—1.19) (0.26)

Jump 0.18 —2.00 —1.51 —1.46 —0.96 1.14
(0.18)  (=2.15) (-2.39) (—1.65) (—0.58) (0.70)

IMC —4.05 —9.52 —7.54 —-12.11 0.34 —-4.39
(—0.68) (—2.30) (-2.83) (-3.25) (0.07) (—0.80)

Ishock 0.32 0.09 —0.05 —0.36 0.02 0.30
(0.83)  (0.36) (—0.24) (—0.77) (0.03)  (0.50)

dYld 0.59 0.10 —0.44 —0.72 —0.09 0.68

(1.44)  (0.40) (—1.80) (—2.08) (—0.30) (1.21)

Panel B. Bond returns

L(ow) 2 3 4 H(igh) L-H
dCIV —0.06 0.54 0.52 0.14 —-0.94 0.89
(—0.68) (3.35)  (4.97)  (1.40) (-3.37) (3.38)
dMVAR  —0.01 0.06 0.07 0.02 —-0.14 0.13
(—1.07)  (2.63)  (4.35)  (2.11) (-3.60) (3.61)
dVIX —0.05 —-0.01 0.01 —-0.01 —-0.12 0.07
(—3.60) (~1.25) (1.16) (—1.27) (=5.54) (2.77)
Jump —1.08 —0.29 0.20 —0.30 —2.93 1.85
(—2.76) (=1.20) (1.01) (—1.09) (—4.91) (2.86)
IMC 1.56 —1.48 —1.43 —0.32 8.58 —7.02
(1.06) (~1.26) (—1.25) (~0.28) (3.58) (—3.38)
Ishock —-0.07 0.32 0.23 0.23 —-0.03 —0.04
(—0.21)  (0.89)  (1.21)  (218) (—0.05) (—0.05)
dYld —0.36 —0.85 —0.89 —0.44 0.53 —0.89

(=1.56) (—2.15) (=2.67) (—1.99) (1.45) (—2.63)
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Table 12: Capital structure arbitrage strategies

This table reports average annualized excess returns and abnormal returns for the capital structure
arbitrage strategies. We form quintile portfolios based on the bond-level debt-equity spread (DES)
of the previous month, and for each DES quintile, we compute the average return of a hedged
position that buys the bond and short-sells the stock of the same firm using the estimated bond-level
hedge ratio. We also estimate the alphas from the CAPM model with both stock market and bond
market factors and a 7-factor model with three equity factors from Fama and French (1992) and four
bond factors from Bai et al. (2019). The sample is from January 1980 to December 2020, except
for the 7-factor model tests, where the sample period is from July 2004 to December 2019 due to
the availability of the Bai et al. (2019) factors. We report the results using both value-weighted
(VW) scheme and equally-weighted (EW) scheme. The Newey-West ¢-statistics given in parentheses
control for heteroskedasticity and autocorrelation based on a lag of 12.

VW Returns
L(ow) 2 3 4 H(igh) H-L
mean —0.21 2.03 3.63 4.49 7.35 7.56
(—0.18) (1.65) (3.09) (3.83) (6.14) (7.21)
a™kt 9288 —1.56 —0.05 0.95 3.75 6.63
(—=4.15) (=2.77) (—0.09) (2.01) (5.31) (5.88)
a’f —1.03 —0.20 0.95 1.31 2.74 3.77
(-1.26) (—0.51) (1.99) (2.42) (2.47) (2.73)

EW Returns
L(ow) 2 3 4 H(igh) H-L
mean —0.61 1.77 3.51 4.55 8.22 8.83
(—0.53) (1.41) (3.04) (4.04) (6.41) (8.16)
a™kt —3.06 —1.66 —-0.11 1.02 4.69 7.75
(—4.85) (—2.78) (—0.24) (2.46) (6.29) (6.81)
a’f —1.68 —0.29 0.65 1.54 3.10 4.78
(=2.17) (=0.70) (1.51) (2.72) (3.34) (3.68)
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Table 13: Corporate security issuance and cash holdings

This table reports results from panel regressions of quarterly net equity issuance, net debt issuance
and change in cash holdings on the debt-equity spread (DES), actual credit spread (CSP) and
market to book equity ratio (ME/BE) of the previous quarter. We include standard control variables
of the previous quarter, namely, the logarithm of total assets, profitability, tangibility, cash reserve,
market leverage, and mispricing score (MispScore) (Stambaugh and Yuan, 2017). while controlling
for firm, industry and time fixed effects across all specifications for panel regressions in Panel A, we
demean all the variables at the firm level and control for industry and time fixed effects for logistic
regressions in Panel B. The variable definitions are in Panel C of Table 1. The t-statistics reported
in parentheses are based on standard errors clustered at the firm level. The sample is from 1980 to
2020, except for Specification (5), where the sample ends in 2016 due to the data availability of
MispScore.

Panel A. Panel regressions

Equity issuance Debt issuance Change in cash holdings
(1) (2) (3) (1) (2) (3) (1) (2) (3)
DES 0.12 0.12 0.08 —0.26 —0.26 —0.22 —0.23 —0.23 —-0.17
(4.01) (4.05) (2.71) (—-3.89) (-3.91) (—2.87) (—-3.69) (-3.69) (—2.60)
CcsP -0.11  —-0.10 —0.03 0.42 0.42 0.40 0.46 0.46 0.54
(—2.93) (—2.89) (—0.96) (5.24) (5.18) (4.14) (5.46) (5.48) (5.79)
ME/BE 0.00 0.00 —0.00 —0.00 0.00 0.00
(1.44) (0.43) (-2.41) (-3.10) (0.44) (0.60)
MktLev 0.05 0.05 0.05 —0.25 —0.25 —0.26 —0.09 —0.09 —0.08
(8.95) (9.33) (8.47) (—18.05) (—18.01) (—15.93) (=7.40) (—7.38) (—6.04)
log(BA) —-0.01 —-0.01 —0.01 —0.02 —0.02 —0.01 —0.03 —0.03 —0.03
(=5.94) (—5.68) (—5.25) (—=5.80) (—5.94) (—4.50) (—8.65) (—8.39) (—7.09)
Profitability —0.13 —0.13  —0.09 —0.32 —0.31 —0.31 —0.07 —0.08 -0.14
(—4.53) (—4.63) (—3.55) (—=3.96) (—3.74) (-3.81) (-=0.61) (-0.62) (—0.98)
Tangibility 0.01 0.01 0.01 0.08 0.08 0.08 —0.03 —0.03 —0.05
(1.11)  (1.21) (1.07) (5.18) (5.01) (4.38) (-1.83) (-1.79) (—2.71)
Cash —-0.06 —-0.056 —0.05 —0.13 —0.13 —0.16 —0.96 —0.96 —1.05
(—4.61) (—4.59) (—4.70) (=5.16) (=5.17) (—6.14) (—=15.59) (—15.59) (—17.81)
Dividend -0.14 -0.15 -0.15 0.52 0.56 0.50 0.13 0.13 0.05
(-2.26) (—2.50) (—=2.51)  (6.26)  (6.71)  (5.61) (1.23)  (1.17)  (0.38)
MispScore 0.03 —0.02 —0.02
(5.47) (—1.90) (—2.73)
N_obs 46071 46071 37033 46071 46071 37033 46071 46071 37033
Adj. R? 0.19 0.19 0.19 0.07 0.07 0.06 0.10 0.10 0.12

56



Panel B. Logistic regressions

Equity-debt swap Cash reduction for debt retirement

(1) (2) (3) (1) (2) (3)

DES 5.13 5.34 4.19 3.02 2.99 3.16
(5.36) (5.56) (3.81) (3.37) (3.34) (2.97)
CsP —8.91 —9.08 —7.86 —5.86 —5.84 —6.31
(=7.60) (=7.75) (—5.85) (-5.33) (—5.31) (—4.82)

ME/BE 0.05 0.07 —0.01 0.00
(5.12) (6.26) (—0.72) (0.02)

MktLev 2.21 2.36 2.35 2.32 2.30 2.38
(14.29)  (14.98) (13.39) (16.01) (15.61) (14.15)

log(BA) —0.01 —0.01 -0.07 0.16 0.16 0.16
(-0.31) (-0.20) (—2.43) (6.17) (6.16) (5.37)

Profitability 0.49 0.12 0.61 2.18 2.23 2.43
(0.72) (0.18) (0.81) (3.40) (3.46) (3.35)
Tangibility —0.81 —0.73 —0.36 —0.65 —0.66 —0.43
(—4.25) (—3.81) (-1.69) (—3.60) (—3.65) (—2.08)

Cash 0.18 0.16 0.86 7.48 7.48 8.15
(0.68) (0.60) (2.90) (29.80)  (29.81) (28.21)
Dividend —5.03 —6.39 —4.29 —5.26 —5.08 —5.07
(—3.89) (—4.83) (—2.88) (—4.43) (—4.18) (—3.61)

MispScore 1.10 0.00
(7.18) (0.01)
N_obs 46178 46178 37121 46178 46178 37121

Pseudo R? 0.01 0.01 0.01 0.03 0.03 0.03
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Table 14: Insider stock selling

This table reports results from panel regressions of monthly insider sales on the on the debt-equity
spread (DES), actual credit spread (CSP) and market to book equity ratio (ME/BE) of the previous
quarter. We use two measures to proxy for insider selling activities, including the fraction of insider
sales volume (the number of shares sold divided by the total number of shares traded each month)
and the fraction of insider sales (the number of sales divided by the total number of trades each
month). We then merge monthly insider trading measures with our DES measure as well as quarterly
Compustat data. We follow Guay et al. (2021) and include standard control variables of the previous
quarter, namely, the logarithm of market capitalization, profitability, book leverage, and market
to book equity ratio (ME/BE). We include (Fama-French 12) industry, and time fixed effects in
all specifications. The variable definitions are in Panel C of Table 1.The t-statistics reported in
parentheses are based on standard errors clustered at the firm level. The sample is from 1986 to
2019, except for Specification (4), where the sample ends in 2016 due to the data availability of
MispScore.

Fraction of insider sales volume Fraction of insider sales
(1) (2) (3) (1) (2) (3)
DES 1.62 1.63 1.35 1.63 1.64 1.36
(3.51) (3.56) (2.62) (3.57) (3.62) (2.63)
CsP —3.58 —3.58 —-3.34 —3.56 —3.57 —-3.27
(=7.50) (—7.53) (—5.95) (=7.26) (=7.29) (-5.73)
ME/BE 0.01 0.01 0.01 0.01
(3.37) (2.37) (3.32) (2.32)
MispScore —0.20 —0.20
(—4.25) (—4.29)
log(Cap) 0.04 0.03 0.01 0.04 0.02 0.01
(3.58) (1.90) (0.91) (3.32) (1.70) (0.75)
Profitability 0.01 0.01 0.02 0.01 0.01 0.02
(0.70) (0.57) (0.88) (0.65) (0.52) (0.87)
Lev —0.02 —0.12 —0.10 —0.03 —0.12 —0.10
(-0.38) (—1.82) (—1.40) (-0.43) (—1.84) (—1.41)
N_obs 14479 14479 12199 14479 14479 12199
Adj. R? 0.38 0.38 0.34 0.38 0.38 0.34
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A Bond data

A.1 Filters

We restrict our sample to semi-annual, and unsecured senior bonds, and apply the following
filters from FISD Mergent:

1. Remove bonds that are not listed or traded in the U.S. public market, which include
bonds issued through private placement, bonds issued under the 144A rule, bonds that

do not trade in US dollars, and bond issuers not in the jurisdiction of the United States.

2. Remove bonds that are structured notes, mortgage backed or asset backed, agency-

backed or equity-linked.

3. Remove convertible bonds since this option feature distorts the return calculation and

makes it impossible to compare the returns of convertible and non-convertible bonds.
4. Remove bonds that trade under one dollar or above one thousand dollars

5. Remove bonds that have a floating coupon rate, and keep bonds with a fixed or zero

coupon.

6. Remove bonds that have less than one year to maturity. If a bond has less than one
year to maturity, it will be delisted from major bond indices; hence, index-tracking
investors will change their holding positions. This operation will distort the return

calculation for bonds with less than one year to maturity.

7. Eliminate bond transactions that are labeled as when-issued, locked-in, or have special

sales conditions.

A.2 Calculation of Bond returns

We use bond returns from Lehman Brothers Fixed Income Database for the period of January
1980 to June 1998, and RET L5M from Wharton Research Data Services (WRDS) for the
period of July 2002 to December 2020. For the rest of the sample, we use bond prices from

NAICS and calculate the monthly bond excess returns as follows:

B _ P+ AL+ Ciy
vt P+ AL

—1 _Tf,t (A]_)

where P, is the transaction price, Al;; is accrued interest, C;, is the coupon payment, if

any, of bond ¢ in month ¢, and 7, is the risk-free rate proxied by the one-month Treasury
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bill rate. We convert the daily bond prices into monthly prices. Following Bai et al. (2019),
we identify two scenarios for a return to be realized at the end of month ¢: (i) from the end
of month ¢ — 1 to the end of month ¢, and (ii) from the beginning of month ¢ to the end of
month ¢. We calculate monthly returns for both scenarios, where the end (beginning) of the
month refers to the last (first) five trading days within each month. If there are multiple
trading records in the five-day window, the one closest to the last trading day of the month
is selected. For the second scenario, we use the first available price within the first five-day
window as the beginning price of the month. We choose the realized return in scenario one

(from month-end ¢ — 1 to month-end ) when a monthly return are available in both scenarios.

B Robustness tests

B.1 Industry-adjusted DES and returns

To alleviate the concern that our results are driven by unobservable heterogeneity across
industries, such as industry-specific competition and recovery rates, we sort firms into quintile
portfolios based on the industry-adjusted DES. At each month, we adjust DES for industry
by taking the difference between a firm’s DES and its affiliated industry median DES. We use
the Fama and French 12 industry classification, because the number of firms at the beginning
of our sample is small. For example, the number of firms available in 1980 is about 60 per

month, which increases to more than 500 firms per month in 2010s.
[Insert Table B1 here]

We first report the results on stock returns. As shown in Panel A of Table B1, the
industry-adjusted DES premium remains economically large and statistically significant
for both value- and equal-weighted portfolios. For example, the annualized value-weighted
DES premium is 7.53% (t-statistic = 4.55), and the Carhart four-factor alpha is 8.02%
(t-statistic = 4.44), respectively. When turning to the bond returns in Panel B, the value-
and equal-weighted bond returns of the L-H portfolio are —5.57 (¢-statistic = —6.57) and 7.8
(t-statistic = —6.87), respectively.

As such, the estimates of the DES premium in stock and bond returns become mostly

larger after we control for the industry effects.

B.2 Black-Cox model-based DES

The benchmark DES we use in the paper is constructed based on the extended CreditGrades

model, which is adopted to better match the empirical credit spread. One may wonder
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how our asset pricing results change when we use the simple Black-Cox model without the

stochastic default boundary. We report the results of this analysis in Table B2.
[Insert Table B2 here]

Without the stochastic default boundary, the model generates a model-implied credit
spread of only 118.7 basis points (untabulated), less than half of the empirical credit spread,
which echoes the credit spread puzzle in the literature. However, the predictions of DES
on the cross-sectional stock and bond returns are quite robust. For example, with the
value-weighted scheme, the average Lo-Hi DES quintile has an annualized return of 7.62%
in the stock portfolios and —3.86% in the bond portfolios. These results are quantitatively
consistent with those using the benchmark DES. Therefore, our asset pricing results are not

sensitive to the specific credit risk model in constructing DES.

B.3 CDS trading and DES premiums

We examine the relation between CDS trading and DES premiums in Table B3. The literature
documents that the introduction of CDS can affect bond liquidity and market efficiency (e.g.,
Das et al. (2014)). It can also create information flow between the equity and CDS markets.
For instance, Acharya and Johnson (2007) find that changes in CDS spreads negatively

predict stock returns, giving rise to a lead-lag linkage between these two markets.
[Insert Table B3 here]

However, the results in Table B3 indicate that the DES premiums remain strong in both
subsamples with and without CDS tradings. In Panel A, the annualized stock DES premium
is 7.51% for the subsample with CDS trading, as compared with 9.53% for the subsample
without CDS trading. Similarly, the bond DES premiums are both around 4%-5% per year.
Therefore, despite the impact of CDS tradings on bond and equity markets documented in
the literature, the DES premiums are not significantly affected by CDS tradings.

B.4 Time-to-maturity and bond DES premium

To further examine the role of the jump risk exposure to the DES premium, we double sort
bonds into time-to-maturity and DES. Bai et al. (2020) document that short-maturity bonds
are more exposed to the jump risk than long-maturity bonds. If jump risk is an important
driver for the DES premiums, we expect the DES bond return spreads to be stronger among

short-maturity bonds. However, Table B4 shows that this is not the case. In our sample from
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1980 to 2020, the bond DES premium is —3.7% for long-maturity bonds, which is higher than
-3.09% for short-maturity bonds. The result remains after we control for the Bai et al. (2019)

factors.

[Insert Table B4 here]

B.5 Long-horizon DES return prediction

Figure 4 indicates that DES can persist for several years. In this subsection, we look into
long-horizon return prediction. We explore various holding periods ranging from one month
to 60 months for the DES long-short portfolio.

The top two panels of Figure B.1 reports the average monthly buy-and-hold returns,
Carhart 4-factor alphas, and their t-statistics against different holding periods. The top
two panels show that the average stock return declines with the holding period, but the
return spread remains sizable and statistically significant (¢-statistic > 2.5), even five years
after portfolio sorts. The bottom two panels show the results for bond portfolios. The
average buy-and-hold bond return decays much faster than stock portfolios. It becomes only

marginally significant 12 months following the portfolio rebalancing.

[Insert Figure B.1 here]

B.6 DES and corporate investments

We provide further evidence on corporate investments, including capital and research &
development (R&D) investments in Table B5. Different from the results in Table 13, most
of the coefficients of DES are economically and statistically insignificant. The difference
indicates that, although they might take advantage of the relative mispricing of financial
securities of their own companies, which are less costly to adjust, the managers do not change

their long-term physical and R&D investment decisions.

[Insert Table B5 here]

B.7 DES and insider trading
We report additional tests to validate our measure via corporate insider tradings in Table B6.
[Insert Table B6 here]

We use a larger sample that includes “routine” trades (Cohen et al., 2012). The estimated
coefficients of DES are similar to those in Table 14. Therefore, our results are independent of

sample selection.
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Figure B.1: Long-term return prediction of debt-equity spread (DES)

This figure plots the mean and t-statistics of monthly buy-and-hold returns of the long-short DES
stock (top panels) and bond (bottom panels) portfolio for a holding period ranging from 1 to 60
months. t-statistics are based on Newey-West standard errors with lag = K42 that control for
heteroskedasticity and autocorrelation, where K is the predictive horizon. The sample is from
January 1980 to December 2020.
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Table B1: Industry-adjusted DES

This table reports average annualized excess returns and abnormal returns for industry-adjusted
DES stock and bond portfolios. We use the Fama and French 12 industry classification and adjust
for industry by taking the difference between the firm level DES and industry median DES at
each month. In Panel A, we form stock quintile portfolios based on the industry-adjusted DES
of the previous month, and then estimate the stock alphas from CAPM, Fama and French (1992)
3-factor model (FF3), Carhart 4-factor model (C4), Fama and French (2015) 5-factor model (FF5),
Stambaugh and Yuan (2017) mispricing-factor model (M4), and Hou, Xue, and Zhang (2015) g-factor
model (HXZ). In Panel B, we form bond quintile portfolios based on the bond-level industry-adjusted
DES of the previous month, and then estimate the one-factor bond alphas, a/™*!, by regressing
excess bond returns on an intercept and the market bond returns (proxied by the Merrill Lynch
Index), and the four-factor bond alphas o*f', by regressing the excess bond returns on an intercept
and four bond factors proposed by Bai et al. (2019). We report the results using both value-weighted
(VW) scheme and equally-weighted (EW) scheme. The Newey-West ¢-statistics given in parentheses
control for heteroskedasticity and autocorrelation based on a lag of 12. The sample is from January
1980 to December 2020, except for the bond four-factor model tests, where the sample period is
from July 2004 to December 2019 due to the availability of the Bai et al. (2019) factors.

Panel A: Stock portfolios

VW Returns
L(ow) 2 3 4 H(igh) L-H
mean 12.53 9.52 6.39 7.09 5.00 7.53
(4.79)  (4.20) (2.56) (2.92) (1.75)  (4.55)

aCAPM 387 1.94 —1.06 —-0.44 =373 7.60
(2.82) (1.68) (—0.90) (—0.38) (—2.76) (4.21)
aof'F3 2.87 1.87 —1.12 —0.91 —4.36 7.23
(2.19)  (1.72) (—1.03) (—-0.88) (—=3.57) (3.92)
aCt 4.49 2.03 —-0.96 —1.02 —353  8.02
(3.66)  (1.74)  (—0.90) (—1.01) (—2.84) (4.44)
aof'F5 1.93 0.44 —2.69 —2.84 —4.74  6.68
(1.41)  (0.44) (—2.15) (—2.84) (-3.51) (3.36)
M4 433 —0.02 -1.68 —146 —255  6.88
(2.72) (—0.02) (—1.30) (—1.25) (—1.58) (3.08)
afX2 3.58 0.22 —1.91 —-1.78  —226  5.84

(1.99)  (0.20) (—1.42) (-1.62) (—143) (2.59)

EW Returns
L(ow) 2 3 4 H(igh) L-H
mean 14.95 11.00 9.94 7.74 7.62 7.32
(4.52)  (4.54) (4.50) (3.10) (2.49) (4.34)

aCAPM 471 2.52 2.01 —0.85 —-2.59  7.30
(2.13)  (1.78) (1.72)  (—0.61) (—1.32) (4.07)
o' F3 2.90 1.53 1.23 —1.98 —4.11 7.00
(1.75)  (1.30) (1.25)  (—1.99) (—2.86) (3.66)
af? 5.87 2.46 2.06 —-1.17 —-192 7.79
(3.76)  (2.37) (2.69) (—1.24) (—1.48) (3.92)
aof'Fs 1.91 -039 —-1.07 —-3.80 —4.74  6.65
(1.13)  (—0.36) (—1.14) (—4.15) (=3.07) (3.67)
aM4 6.31 1.01 0.57 —-229  —1.25  7.56
(3.08)  (0.70) (0.52) (—1.84) (—0.77) (3.23)
afX2 5.04 0.31 —0.20 —-2.33  —1.60  6.64

(2.19)  (0.21) (—0.14) (—-1.81) (—0.72) (2.83)
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Panel B: Bond portfolios

VW Returns
L(ow) 2 3 4 H(igh) L-H
mean 2.43 2.84 3.63 5.28 7.99 —5.57
(1.90) (2.36) (3.10) (4.62) (5.76) (—6.57)
amft 132 —1.07 —0.25 140  4.33 —5.65
(-2.31) (-2.31) (—0.56) (3.04) (5.86) (—7.20)
atf —0.02 0.11 0.84 1.94 2.63 —2.64
(=0.03) (0.21) (L.77)  (4.19) (3.22) (—4.08)
EW Returns
L(ow) 2 3 4 H(igh) L-H
mean 1.90 2.92 3.58 5.52 9.70 —17.80
(1.45) (2.34) (3.15) (4.17)  (6.06) (—6.87)
amkt —-1.73 —0.96 —0.25 1.69 5.95 —7.68
(=2.57) (—2.36) (—0.68) (3.65) (6.75) (—7.42)
atf —0.65 -0.33 0.89 2.31 3.01 —3.65
(—-0.83) (-0.69) (2.11) (4.52) (3.24) (-3.72)
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Table B2: Black-Cox model based DES

This table reports average annualized excess returns and abnormal returns for stocks and bonds
using the Black-Cox model based DES. In Panel A, we form stock quintile portfolios based on the
firm-level debt-equity spread (DES) of the previous month based on the Black-Cox model, and then
estimate the stock alphas from CAPM, Fama and French (1992) 3-factor model (FF3), Carhart
4-factor model (C4), Fama and French (2015) 5-factor model (FF5), Stambaugh and Yuan (2017)
mispricing-factor model (M4), and Hou, Xue, and Zhang (2015) g-factor model (HXZ). In Panel B,
we form the bond quintile portfolios based on the bond-level DES of the previous month, and then
estimate the one-factor bond alphas, a™¥t, by regressing excess bond returns on an intercept and
the market bond returns (proxied by the Merrill Lynch Index), and the four-factor bond alphas
o' by regressing the excess bond returns on an intercept and four bond factors proposed by Bai
et al. (2019). The sample is from January 1980 to December 2020, except for the bond four-factor
model tests, where the sample period is from July 2004 to December 2019 due to the availability
of the Bai et al. (2019) factors. We report the results using both value-weighted (VW) scheme
and equally-weighted (EW) scheme. The Newey-West t-statistics given in parentheses control for
heteroskedasticity and autocorrelation based on a lag of 12.

Panel A: Stock returns

VW Returns
L(ow) 2 3 4 H(igh) L-H
mean 12.75 7.66 8.15 5.90 5.13 7.62
(5.13)  (3.56) (3.30) (2.31) (1.56) (3.91)

aCAPM 439 _0.04 0.44 -195 —4.19 851
(3.29) (—0.04) (0.50) (—1.42) (—2.76) (4.14)
af F3 3.44  —0.22 0.33 —2.74  —5.00 8.44
(2.73) (—0.26) (0.38) (—2.48) (—3.40) (3.97)
at? 456  —0.33 0.76 —2.58 —3.70 8.25

(3.71) (—0.40) (0.90) (—2.35) (—2.71) (3.96)
af'Fd 274  —-172 —-170 —4.12 —5.14 7.88
(2.23) (—2.14) (—1.72) (-3.73) (-3.38) (3.82)
aM4 430 —-1.10 —-043 —-264 —3.05 7.35
(2.95) (—1.13) (—0.41) (—1.88) (—1.92) (3.14)
afiXz 335 —124 —054 —236 —3.19 6.54
(2.30) (—1.31) (—0.47) (—1.65) (—1.77) (2.71)

EW Returns
L(ow) 2 3 4 H(igh) L-H
mean 15.70 9.91 9.69 8.18 7.47 8.23
(5.17)  (4.17) (4.16) (3.13) (2.28) (4.34)

aCAPM 5 94 1.60 1.50 —-0.65 —3.14  9.09
(2.90) (1.14)  (1.19) (—0.39) (—1.50) (4.59)
af'F3 4.24 0.62 0.68 —-1.95 —4.86 9.09
(2.54)  (0.50)  (0.67) (—1.81) (—3.01) (4.25)
act 6.37 1.36 1.73 —-1.04 —2.18 855

(3.74)  (1.28)  (1.92) (—1.04) (—1.57) (3.84)
af Fo 292 —154 —141 —-365 —5.66 8.58
(1.94) (-1.31) (—1.52) (—3.63) (—3.33) (4.33)
aM4 6.50 —0.16 0.38 —1.57 =199 849
(3.09) (-0.10) (0.32) (—1.25) (—1.13) (3.64)
o X2 497  —072 —-024 —158 —251 7.48
(2.72) (—0.42) (—0.16) (—1.01) (—1.03) (2.73)
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Panel B: Bond returns

VW Returns
L(ow) 2 3 4 H(igh) L-H
mean 2.74 3.97 4.16 4.79 6.60 —3.86
(1.95) (3.03) (3.45) (4.14) (5.11) (—4.25)
a™kt 170 —0.58 —0.02 0.76 2.74 —4.44
(=3.16) (—1.46) (—0.06) (1.85) (3.79) (—5.01)
atf —0.73 0.26 0.69 0.77 1.47 —2.20
(—1.69) (0.54)  (1.41) (1.24) (1.50) (—1.88)
EW Returns
L(ow) 2 3 4 H(igh) L-H
mean 2.84 3.75 4.06 5.06 7.81 —4.97
(2.06) (2.87) (3.35)  (4.40) (5.51) (-5.38)
a™kt 151 —0.63 —0.12 1.07 3.95 —5.46
(=3.21) (—1.65) (—0.34) (2.61) (5.18) (—6.20)
atf —0.74 0.13 0.54 1.16 1.78 —2.52
(-=1.53)  (0.25)  (1.18) (1.90) (2.00) (—2.40)
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Table B3: CDS trading and DES premiums

This table reports average annualized excess returns and abnormal returns for DES stock and bond
portfolios for the subsample of firms with or without CDS trading. In Panel A, we form stock
quintile portfolios based on DES of the previous month for each subsample, and then estimate the
stock alphas from CAPM, Fama and French (1992) 3-factor model (FF3), Carhart 4-factor model
(C4), Fama and French (2015) 5-factor model (FF5), Stambaugh and Yuan (2017) mispricing-factor
model (M4), and Hou, Xue, and Zhang (2015) g-factor model (HXZ). In Panel B, we form bond
quintile portfolios based on the bond-level DES of the previous month for each subsample, and then
estimate the one-factor bond alphas, a™¥t, by regressing excess bond returns on an intercept and
the market bond returns (proxied by the Merrill Lynch Index), and the four-factor bond alphas att,
by regressing the excess bond returns on an intercept and four bond factors proposed by Bai et al.
(2019). We report the results using value-weighted (VW) scheme to save space. The Newey-West
t-statistics given in parentheses control for heteroskedasticity and autocorrelation based on a lag
of 12. The sample is from January 2002 to December 2020, except for the bond four-factor model
tests, where the sample period is from July 2004 to December 2019 due to the availability of the
Bai et al. (2019) factors.

Panel A: Stock portfolios

With CDS
Llow) 2 3 4 H(igh) L-H
mean  14.45 898  6.38 6.45 6.94 751
(3.70) (3.01) (1.89)  (1.89)  (1.69)  (2.90)

aCAPM 5 44 1.56 —0.90 —0.46 —-1.82  7.27
(2.60) (1.36) (—0.92) (—0.30) (—0.78) (2.47)
aofF3 6.05 1.45 —-0.97  —0.48 —-1.17  7.22
(3.01) (1.31) (—1.05) (—0.30) (—0.61) (2.38)
aCt 6.71 1.31 —1.44 —0.58 -1.06  7.77
(3.77)  (1.18) (—1.61) (—0.38) (—0.54) (2.74)
aof'Fo 4.69 1.23 —2.25 —2.50 —1.96 6.65
(3.07) (1.08) (—2.43) (—1.58) (—1.10) (2.50)
M4 716 152  —1.88 0.32 1.14 6.02
(2.58) (1.38) (—1.61)  (0.20) (0.72)  (1.59)
afX2 6.59  0.79 —0.95 0.54 1.35 5.24

(2.65) (0.59) (—1.13) (0.33)  (0.80)  (1.46)

Without CDS
L(ow) 2 3 4 H(igh) L-H
mean 13.61 10.30 7.42 5.74 4.08 9.53
(2.43) (2.69) (1.91)  (1.32)  (0.66) (2.85)
aCAPM 942 169  —0.77 —3.58 —6.96  9.38
(1.16) (1.21) (-0.62) (—2.24) (—2.03) (2.47)
aof F3 3.49 1.19 —0.78 —3.47 —6.30 9.79
(1.79) (0.92) (-0.65) (—2.08) (—1.87) (2.55)

aCt 4.11 1.10 —0.99 —3.45 —6.15 10.26
(2.23) (0.87) (—0.88) (—2.02) (—1.79) (2.85)
aof'Fo 3.65 1.04  —2.48 —-520 —6.63 10.28
(1.85) (0.84) (—1.89) (—3.01) (—1.97) (2.85)
oM 6.80  0.72 —1.64 —1.93 —4.60 11.40

(3.09) (0.59) (—1.29) (—1.03) (-1.17) (2.32)
ofXZ 431 084 —1.62 —220 —513 944
(2.01) (0.49) (—1.40) (—1.07) (—1.14) (1.94)
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Panel B: Bond portfolios

With CDS
L(ow) 2 3 4 H(igh) L-H
mean  3.58 4.28 4.96  5.65 8.40 —4.82
(2.40)  (3.12)  (3.86) (4.31) (4.47) (—3.86)
a™kt —0.67 0.28 0.98  1.57 3.64 —4.31
(—1.00)  (0.41) (1.45) (2.86) (2.63) (—2.62)
atf -1.17  —0.27 058 120 292 —4.09

(—1.89) (—0.44) (1.00) (2.22) (2.69) (—2.67)

Without CDS

L(ow) 2 3 4 H(igh) L-H

mean  3.41 424 534 542 7.81 —4.40
(2.32)  (3.08) (3.87) (3.46) (3.33) (—2.88)

a™kt 057 002 144  1.15 2.87 —3.43
(—0.52) (0.03) (2.39) (1.80) (2.08) (—2.78)

atf -0.79 030 1.02  0.17 0.94 —1.74

(-0.92) (0.74) (1.57) (0.21) (0.98) (—1.46)
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Table B4: Time-to-maturity and bond DES premiums

This table reports the average annualized value-weighted excess returns and Bai et al. (2019) 4-factor
model abnormal returns of the debt-equity spread (DES) portfolios, conditional on time-to-maturity.
Each month we sequentially sort bonds into 3-by-3 portfolios based on time-to-maturity and DES.
The Newey-West t-statistics given in parentheses control for heteroskedasticity and autocorrelation
based on a lag of 12. The sample is from January 1980 to December 2020. All 4-factor model tests

start in July 2004 due to the availability of the Bai et al. (2019) factors.

L(ow) M(id) H(igh) L-H L(ow) M(id)  H(igh) L-H
Low 1.96 2.71 5.06 —3.09 0.06 0.86 2.04 —1.98
(1.85) (2.94) (5.19) (—4.80) (0.12)  (2.15) (3.70) (—2.33)
Mid  3.22 3.73 6.41 —3.19 0.30 0.90 1.11 —0.81
(2.34)  (2.86) (4.86) (—4.66) (0.71)  (1.83)  (1.40) (—0.82)
Hi 3.75 5.38 7.46 -3.70 —1.80 —0.05 1.09 —2.89
(2.37) (3.67) (5.07) (—4.28) (-3.32) (—0.06) (0.98) (—2.60)
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Table B5: Tangible and intangible investments

This table reports results from panel regressions of quarterly net capital investments (Panel A), and
changes in cash holding (Panel B) on the debt-equity spread (DES), actual credit spread (CSP)
and market to book equity ratio (ME/BE) of the previous quarter. We include standard control
variables of the previous quarter, namely, the logarithm of total assets, profitability, tangibility, cash
reserve, market leverage, and mispricing score (MispScore) (Stambaugh and Yuan, 2017), as well as
firm, (Fama-French 12) industry, and time fixed effects in all specifications. The variable definitions
are in Panel C of Table 1. The t-statistics reported in parentheses are based on standard errors
clustered at the firm level. The sample is from 1980 to 2020, except for Specification (5), where the
sample ends in 2016 due to the data availability of MispScore.

Tangible and Intangible Investments

Capital investments R&D investments

(1) (2) (3) (1) (2) (3)
DES —0.01 —0.01 —0.01 —0.02 —0.01 —0.01
(—0.30)  (=0.23)  (—0.53) (—2.38) (=2.11) (—1.42)

CcsP —0.15 —0.15 —0.17 0.03 0.03 0.04
(—4.57)  (—4.62)  (—4.59) (3.76)  (3.62)  (3.52)

ME/BE 0.00 0.00 0.00 0.00
(1.62) (1.90) (3.90) (3.75)
MktLev —0.08 —0.08 —0.08 —0.00 —0.00 —0.00
(—14.00) (—13.56) (—13.12)  (—2.69) (—1.82) (—1.34)
log(BA) —0.01 —0.01 —0.01 —0.00 —0.00 —0.00
(=7.53)  (=7.50)  (—7.46) (=2.01) (-1.92) (—1.28)

Profitability 0.10 0.10 0.09 0.03 0.02 0.03
(4.00) (3.87) (3.37) (2.89) (2.51) (2.33)

Tangibility 0.08 0.08 0.09 0.00 0.00 0.00
(10.12)  (10.18)  (10.87) (127)  (1.64)  (0.76)

Cash —0.01 —0.01 —0.01 0.01 0.01 0.01
(—0.92)  (—0.94)  (—0.50) (1.53)  (1.48)  (1.29)

Dividend —0.07 —0.08 —0.10 0.03 0.02 0.01
(=1.65) (—=1.95) (—2.30) (1.83) (0.91) (0.71)
MispScore 0.01 —0.00
(3.48) (—1.26)
N_ obs 45987 45987 36943 46178 46178 37121

Pseudo R? 0.16 0.16 0.16 0.07 0.07 0.07
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Table B6: DES and insider trading

This table reports alternative tests for insider sales using a sample that include routines. We report
results from panel regressions of quarterly insider sales fraction on the debt-equity spread (DES).
We use two measures to proxy for insider selling activities, including the fraction of insider sales
volume (the number of shares sold divided by the total number of shares traded each quarter) and
the fraction of insider sales (the number of sales divided by the total number of trades each quarter) .
We merge the quarterly insider trading measure with our DES measure, which is the available in the
previous quarter. We follow Guay et al. (2021) and include standard control variables of the previous
quarter, namely, the logarithm of market capitalization, profitability, book leverage, and market to
book equity ratio (ME/BE), as well as mispricing score (MispScore) (Stambaugh and Yuan, 2017).
We include firm, (Fama-French 12) industry, and time fixed effects in all specifications. The variable
definitions are in Panel C of Table 1.The t-statistics reported in parentheses are based on standard
errors clustered at the firm level. The sample is from 1986 to 2019, except for Specification (4),
where the sample ends in 2016 due to the data availability of MispScore.

Fraction of insider sales volume Fraction of insider sales
(1) (2) (3) (1) (2) (3)
DES 1.96 1.97 1.57 1.97 1.99 1.58
(3.81) (3.84) (2.79) (3.85) (3.88) (2.77)
CsP —4.08 —4.07 —3.76 —4.05 —4.04 —3.67
(—-6.24) (—6.27) (—5.46) (—-6.04) (—6.06) (—5.26)
ME/BE 0.01 0.01 0.01 0.01
(2.86) (2.10) (2.84) (2.06)
MispScore —0.25 —-0.24
(—4.24) (—4.26)
log(Cap) 0.02 —0.00 —0.01 0.01 —0.00 —0.01
(0.96) (0.00) (—0.56) (0.82) (—0.12) (-0.63)
Profitability 0.02 0.01 0.02 0.01 0.01 0.02
(0.63) (0.56) (0.83) (0.60) (0.53) (0.83)
Lev —0.01 —0.09 —0.08 —0.01 —0.09 —0.08
(-=0.10) (-—1.20) (—1.01) (-0.13) (-1.23) (-1.02)
N_obs 14877 14877 12536 14877 14877 12536
Adj. R? 0.38 0.38 0.35 0.39 0.39 0.35
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