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Abstract

We study the transmission of U.S. monetary policy using the full cross-sectional

distribution of the excess bond premium (EBP), the component of credit spreads

linked to the financial sector’s firm-specific pricing of risk. We document a puzzle:

monetary policy shocks have stronger effects on the EBPs of riskier firms—those in

the right-tail of the EBP distribution—but lead to larger investment responses on

the part of safer firms. These findings cannot simultaneously hold in models where

investment responds uniformly across firms to changes in borrowing costs. We resolve

this puzzle by showing that firm-level investment responds heterogeneously to changes

in EBP, with safe firms responding relatively more than risky firms. Our results help

elucidate the investment channel of monetary policy.
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1 Introduction

In the aftermath of the global financial crisis, there has been a resurgence of interest in the

relationship between financial conditions, monetary policy, and economic growth. Gilchrist

and Zakraǰsek, 2012 construct a credit spread index with considerable predictive power

for future economic activity. Orthogonalized shocks to the (mean) excess bond premium

component (EBP) of that spread lead to significant declines in economic activity and asset

prices. Adrian et al., 2019 analyze the full distribution of future GDP growth as a function

of current aggregate financial conditions, as measured by the Chicago Fed’s National Fi-

nancial Conditions Index. They find that the conditional mean of GDP growth is negatively

correlated with conditional volatility in financial conditions and with measures of downside

risk. They also find that lower quantiles of the GDP growth distribution are closely related

to current aggregate financial conditions, while the upper quantiles of this distribution are

not. This has the important implication that conditions such as the buildup of leverage

in the financial sector—perhaps resulting from unconventional monetary policy measures

designed to boost aggregate demand—have the perverse effect of creating downside risk to

the economy, giving rise to financial vulnerability (Adrian and Liang, 2018, Coimbra et al.,

2021). This creates potential dilemmas for policymakers over whether and how monetary

policy should incorporate risks to financial stability.1

In this paper, we provide granular evidence on the investment channel of monetary

policy, with particular emphasis on the role of financial conditions. We document how

monetary policy affects the full cross-sectional distribution of the excess bond premium

(EBP), the component of credit spreads linked to the financial sector’s time-varying risk-

aversion towards a firm (Gilchrist and Zakraǰsek (2012)). We document a puzzle from two

baseline results: monetary policy shocks have (1) stronger effects on the EBPs of riskier

1More generally, Curdia and Woodford, 2010 assess a modification of the Taylor rule in which the
intercept, which represents the Fed’s view of the equilibrium real Fed Funds rate, is adjusted in response
to variations in credit spreads, a proposal made by Taylor, 2008. Such a rule would require that monetary
policy be loosened when credit spreads are larger than normal: the Fed Funds rate should be reduced
relative to what the standard Taylor rule would prescribe when spreads are high. Analyzing whether this
modification would improve the way the economy responds to various disturbances, Curdia and Woodford,
2010 find some favorable evidence, but argue that it is not ideal. An approach that is superior to putting
a single measure of financial conditions in the policy rule, they note, is to adjust the policy instrument so
as to imply projections for inflation and real activity that are consistent with a target criterion.
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firms—those in the right-tail of the EBP distribution—but (2) lead to larger investment

responses on the part of safer firms. These findings cannot simultaneously hold in models

where investment responds uniformly across firms to changes in borrowing costs. We resolve

this puzzle by investigating heterogeneity in how firms change investment when faced with

higher EBPs. We show that an increase in the EBPs of the safe, left-tail EBP firms has a

larger effect on investment than an increase in the EBPs of right-tail EBP firms.2

These findings help elucidate the investment channel of monetary policy and comple-

ment the literature on heterogeneity in the transmission of monetary policy across firms.

Gertler and Gilchrist (1994) show that small firms’ sales decline more rapidly than large

firm sales following a monetary policy tightening. Bernanke et al. (1996) also demonstrate

that smaller firms are more responsive to monetary policy. Ottonello and Winberry (2020)

find that investment by firms with low default risk responds significantly more to monetary

policy shocks than investment by firms with high default risk. Cloyne et al. (2019) show

the importance of firms’ age and dividend payout practices on the response of investment

to U.K. monetary policy shocks. Jeenas (2019) reports that firms with fewer liquid assets

reduce investment relative to others in response to tightening monetary policy shocks, and

Anderson and Cesa-Bianchi (2021) show that the credit spreads of firms with high lever-

age rise more in response to monetary policy tightening than firms with low leverage. Our

results also complement recent papers such as Carvalho and Grassi (2019), who show that

large firms play an outsized role in driving the business cycle.3 Since we document that

less-leveraged and larger-sized firms typically have the lowest levels of EBP, our firm-level

results on transmission are consistent with these aggregate findings.

2Viewed from a slightly different angle, our results point to a tension for monetary policymakers, even
aside from the important question “should credit spreads be in the policy rule?”. On one hand, our evidence
implies that the financial conditions of safer and larger firms are of particular importance to the cyclical
fluctuations of the macroeconomy. On the other hand, the results imply that monetary policy is most
effective at stimulating the financial conditions of riskier and smaller firms. Missteps in navigating this
tension could create the above-mentioned financial vulnerabilities and downside risks to the economy.

3See also Giglio et al. (2016), who use a quantile regression approach to evaluate the ability of various
measures of systemic risk proposed in the literature to predict real activity. They find that some measures
of systemic risk are statistically significant predictors of the left tail of real activity but not the right tail.
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2 Cross-Sectional EBPs and Firm Characteristics

In this section, we discuss our data sources and the EBP calculation, document firm-level

characteristics associated with the EBP, and summarize how the cross-sectional EBP dis-

tribution evolves over time. Throughout, we exploit four databases: the CRSP database for

stock market returns, Compustat for firm balance sheet information, and Lehman/Warga

and Merrill Lynch for corporate bond yields quoted in secondary markets. The sample

period is October 1973 to December 2019.

To calculate the excess bond premium, we follow an approach similar to Gilchrist and

Zakraǰsek (2012). We calculate the credit spread Sit[k] for bond k issued by firm i at time t

as the difference between the bond’s yield and the yield on a U.S. Treasury with the exact

same maturity using estimates from Gürkaynak et al. (2007).4 Then, we decompose each

bond’s credit spread Sit[k] into two components. The first is driven by the firm’s default

risk, as well as its bond characteristics, and is termed the predicted spread Ŝit[k]. The

second, and residual, component is the excess bond premium, EBPit[k].

More precisely, we assume the following decomposition for credit spreads:

logSit[k] = βDDit + γ
′
Zit[k] + εit[k], (1)

in which the log of the credit spread Sit[k] is a linear function of (i) firm i’s distance-to-

default DDit (Merton, 1974), capturing firm i’s expected default probability, (ii) a vector

of bond characteristics Zit[k], which includes the bond’s duration, coupon rate and age,

and (iii) an error term εit[k]. We provide details on calculating a firm’s distance-to-default

as well as the full list of bond characteristics Zit[k] in Appendix A.

Assuming the error term εit[k] is normally distributed, we can estimate regression (1)

by OLS and compute the predicted credit spread Ŝit[k] as

Ŝit[k] = exp
[
β̂DDit + γ̂

′
Zit[k] +

σ̂2

2

]
, (2)

4For simplicity, we abstract from calculating the yield on a synthetic U.S. Treasury with the same cash
flow structure.
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where β̂ and γ̂ denote the OLS estimates and σ̂2 denotes the estimated variance of the

error term. While the model is simple, it explains in excess of 70% of the variation in credit

spreads.5 Finally, we define the excess bond premium of firm i’s bond k at time t as

EBPit[k] = Sit[k]− Ŝit[k]. (3)

We implement the procedure above for all bonds issued by non-financial firms whose

balance sheet data and equity prices are available from Compustat and CRSP, respectively.

This procedure yields a monthly sample of 10,598 bonds from 1,894 firms, which we term

the bond-level EBP distribution.

As in Gilchrist and Zakraǰsek (2012), our credit spread model (1) assumes a constant

price of default risk for all firms at all times. Specifically, the coefficient on the distance-to-

default, β, is both time- and firm-invariant. Thus, variation in the predicted spread Ŝit[k]

is due mainly to variation in the quantity of risk, as captured by DDit. As a result, the

residual component of the credit spread, the EBPit[k], may capture the financial sector’s

time-varying and firm/bond-specific pricing of default risk. We interpret this time-varying

price of risk as a bond-specific financial condition, or similarly, following Gilchrist and

Zakraǰsek (2012), as the financial sector’s time-varying risk-aversion towards firm i’s bond

k.6

Figure 1 documents the cross-sectional heterogeneity in EBP as a function of firms’

financial characteristics, namely distance to default and leverage. It shows that firms with

low distance to default and high leverage—those we term high quantity-of-risk firms—

have the highest average EBP and thus tend to be the firms in the right tail of the EBP

distribution. Conversely, firms with high distance to default and low leverage—low quantity-

of-risk firms—have the lowest average EBP and thus tend to be the firms in the left tail

of the EBP distribution. Thus, these results show that, on average, high quantity-of-risk

firms face a higher price of risk (EBP) relative to low quantity-of-risk ones.

5The distance-to-default alone explains 65% of the variation in credit spreads.
6Gilchrist and Zakraǰsek (2012) show that an adverse shock to the equity value of primary dealers

(financial intermediaries) leads to a rise in their CDS spreads that is matched, nearly one-to-one, with a
rise in the mean EBP across firms.
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Figure 1
Average EBP per Quartile of Distance to Default and Leverage
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Note. Figure 1 reports the average EBP for each quartile of firm distance-to-default (DD) and
leverage, measured as debt over assets. Bond EBPs and firm characteristics are calculated as the
within-firm average over the sample. EBPs are then averaged for each quartile of DD and leverage.

Figure 2 highlights that the tails of the EBP distribution move non-uniformly over

the business cycle. The right-tail of the EBP distribution tend to co-move with the mean,

rising during periods of stress and falling during calmer times.7 However, the right tail is

volatile, with significant increases outside recessions, such as in the mid-1980s and post-

2000 recession. The left-tail has more contained fluctuations, with a significant rise above

zero only during the 2008 Global Financial Crisis.

The results from this section highlight that focusing on the mean EBP overlooks sub-

stantial heterogeneity in the EBP distribution both across firms and across time. Moreover,

this heterogeneity is associated with firm-level characteristics tied to important business

cycle theories (Bernanke et al., 1999).

7Of note, the correlation between our mean credit spread and EBP and those of Gilchrist and Zakraǰsek
(2012) are 96% and 85%, respectively.
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Figure 2
Cross-Sectional EBP Distribution over the Business Cycle
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Note. Figure 2 shows the percentiles and mean of the cross-sectional distribution of EBP. Shaded
columns represent periods classified as recessions by the National Bureau of Economic Research.

3 Monetary Policy Drives EBP Heterogeneity

In this section, we assess monetary policy’s effects on the cross-sectional distribution of

credit spreads, focusing primarily on the Excess Bond Premium component. We find that

the financial conditions of high price-of-risk firms, as well as high leverage and low distance-

to-default firms, are particular sensitive to monetary shocks.

We begin by estimating the dynamic response of bond-level EBPs and predicted

spreads Ŝ to monetary policy shocks at a monthly frequency using the following Jordà

(2005) local projection:

Sit+h[k]− Sit[k] = β0 + β1ε
m
t +

3∑
l=1

γ
′

lZit−l +
3∑
l=1

γ
′

l∆Yt−l + αk + eithk (4)

where Sit[k] ∈ {EBPit[k], Ŝit[k]} denotes either the bond-k EBP or predicted spread , and

εmt denotes a Bu et al. (2021) monetary policy shock.8 Additionally, Zt controls for firm

8In Appendix C, we show that our results from this section are similar when using the Jarociński and
Karadi (2020) monetary policy shock (see Figures C.6, C.7, and C.8).
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Figure 3
Monetary Policy’s Effect on Bond-Level Credit Spreads

(a) Excess Bond Premium
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Note. Figure 3 reports the dynamic effects (β1) of a Bu et al. (2021) monetary policy shocks (εmt ) on
the h-period change in credit spreads Sit+h[k]−Si,t[k] where Sit[k] is EBPit[k] in Panel 3a and Sit[k]

is Ŝit[k] in Panel 3b from regression (4), where the frequency of the data is monthly. The inner and
outer shaded areas correspond to the 68% and 90% confidence intervals constructed using two-way
clustered standard errors by firm i and month t (Cameron et al., 2011), respectively, implemented
with the statistical module of Correia (2016).

characteristics, namely leverage, size and distance-to-default; ∆Yt controls for changes in

macroeconomic conditions using the Chicago FED’s national activity index as well as the

Baker et al., 2016 economic policy uncertainty index; and αk denotes bond fixed effects.

Throughout, confidence intervals are constructed using two-way clustered standard errors

by firm i and month t (Cameron et al., 2011).

Panel 3a highlights that a monetary policy tightening leads to a significant and persis-

tent rise in bond-level EBPs on average. At its peak about eight months after the shock, a

100 basis point monetary policy tightening is associated with a nearly 5 percentage point

rise in a bond’s EBP, on average. Conversely, Panel 3b shows that the predicted spread

component is very unresponsive to monetary policy. Thus, monetary policy’s effect on the

marginal borrowing costs of firms—their credit spreads—is due almost entirely to chang-

ing the price of risk faced by firms, as opposed to changing the risk profile of the firms

themselves. These dynamic effects complement the findings of Anderson and Cesa-Bianchi

(2021), who show that only the EBP component of credit spreads adjusts to monetary

policy shocks on-impact, using a high-frequency approach. In light of the results in Figure
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3, throughout the rest of the paper we focus on the EBP component of spreads.

Next, to investigate the heterogeneous effects of monetary policy on bond-level financial

conditions, we estimate an augmented version of our earlier local projection:

EBPit+h[k]− EBPit[k] =β0 + β1ε
m
t + β2[xit−1 − Ei(xit)]εmt + β3xit−1

+
3∑
l=1

γ
′

lZit−l +
3∑
l=1

δ
′

l∆Yt−l + αk + eikth, (5)

which now includes the interaction between a firm’s financial characteristic xit and the

monetary policy shock εmt . As in Ottonello and Winberry (2020), we use the interaction

between the within-firm variation in a firm’s financial position and the monetary shock

[xit−1−Ei(xit)]εmt to focus on how a given firm responds to a monetary policy shock when

it is more or less risky than usual. In our baseline, we set xit to be either firm leverage levit,

as in Anderson and Cesa-Bianchi (2021), firm distance-to-default ddit, as emphasized for

investment in Ottonello and Winberry (2020), and, new to the literature, the price of risk

of bond k captured by the EBPit[k].

Figure 4 reports the marginal effects for the interaction between within-firm EBP and

the monetary shock from estimating (5). In conjunction with the positive unconditional

effect displayed in Panel 3a, the positive coefficients in Figure 4 imply that the EBPs of high

price-of-risk firms—right-tail EBP firms—are substantially more responsive to monetary

policy than low price-of-risk firms. Specifically, at its peak, a firm one standard deviation

above its average price of risk is nearly twice as responsive to a monetary shock compared

to a firm at its historical average.

When we estimate (5) using ddit and levit, we find the magnitudes of the point estimates

for the interaction terms are similar to those for EBPit[k], but the marginal effects are

less precisely estimated, as seen in Figure 5. The sign of the coefficients implies that the

financial conditions of low distance-to-default firms and high leverage firms—high quantity-

of-risk firms—are significantly more responsive to monetary policy than are the financial

conditions of safe firms.

The summary statistics in Figure 1, however, document a cross-sectional relationship
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Figure 4
Monetary Policy’s Effect on Bond-Level EBP by Firm Price-of-Risk
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Note. Figure 4 reports the dynamic effects (β2) of the interaction between within-firm variation in a
firm’s price-of-risk EBPi,t and a Bu et al. (2021) monetary policy shocks ([EBPit−1−Ei(EBPit)]εmt )
on the h-period change in EBP, EBPit+h[k]−EBPi,t[k], from regression (5), where the frequency of
the data is monthly. The inner and outer shaded areas correspond to the 68% and 90% confidence
intervals constructed using two-way clustered standard errors by firm i and month t (Cameron et
al., 2011), respectively, implemented with the statistical module of Correia (2016).

between EBP and risk: high quantity-of-risk firms face a higher price of risk on-average.

To see whether quantity or price of risk is most-responsible for the heterogeneous effects

of monetary policy on firm financial conditions, in Appendix C, we estimate (5) with both

an EBP interaction and a quantity-of-risk interaction, using either leverage or distance to

default. The results are displayed in Figure C.1 and highlight that the results are largely

driven by the price of risk, the EBP.

Together, the results from this section highlight than monetary policy affects the credit

spreads of firms by regulating the price-of-risk charged by the financial sector. In addition,

it is high price-of-risk firms, as well as high quantity-of-risk firms, whose financial conditions

are most responsive to monetary shocks.
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Figure 5
Monetary Policy’s Effect on Bond-Level EBP by Firm Quantity-of-Risk

(a) Conditional on Distance to Default
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Note. Figure 5 reports the dynamic effects (β2) of the interaction between within-firm variation in
a firm’s quantity-of-risk xi,t and a Bu et al. (2021) monetary policy shocks ([xit−1 − Ei(xit)]εmt ),
where xi,t is ddi,t in Panel 5a and is levi,t in Panel 5b, on the h-period change in EBP, EBPit+h[k]−
EBPi,t[k], from regression (5). The frequency of the data is monthly. The inner and outer shaded
areas correspond to the 68% and 90% confidence intervals constructed using two-way clustered
standard errors by firm i and month t (Cameron et al., 2011), respectively, implemented with the
statistical module of Correia (2016).

4 Monetary Policy and Firm-Level Investment

In this section, we estimate the heterogeneous effects of monetary policy on firm-level

investment. We find that investment done by low price- (EBP) and quantity- (leverage and

dd) of-risk firms are most responsive to monetary policy shocks. This stands in contrast to

our findings from Section 3, where the borrowing costs of high price- and quantity-of-risk

firms were most responsive to monetary shocks. We resolve this tension in the next section.

We begin by using quarterly firm-level balance sheet data from the Compustat database

to construct a measure of firm i’s real investment ∆logKit, where Kit is equal to the (real)

book value of firm i’s tangible capital stock at time t, as in Ottonello and Winberry (2020).

We then estimate the following firm-level investment local projection at a quarterly fre-

quency:
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Figure 6
Monetary Policy’s Effect on Firm-Level Investment
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Note. Figure 6 reports the dynamic effects of a Bu et al. (2021) monetary policy shock (β1) in Panel
6a and of the interaction (β2) between within-firm variation in a firm’s price-of-risk EBPi,t and
the monetary shock, [EBPit−1 − Ei(EBPit)]εmt , on the h-period Investment of firm i, logKit+h −
logKit, from regression (6). The frequency of the data is quarterly. The inner and outer shaded areas
correspond to the 68% and 90% confidence intervals constructed using two-way clustered standard
errors by firm i and quarter t (Cameron et al., 2011), respectively, implemented with the statistical
module of Correia (2016).

logKit+h − logKit =β0 + β1ε
m
t + β2[xit−1 − Ei(xit)]εmt

+
3∑
l=1

γ
′

lZit−l +
3∑
l=1

γ
′

lYt−l + αi + eith, (6)

where εmt is the Bu et al. (2021) monetary policy shock summed to a quarterly frequency

and xit is either leverage or distance-to-default, as in Ottonello and Winberry (2020), or

our preferred measure of a firm’s financial condition, the EBP.9 With Zit, we control for

firm characteristics, namely leverage, distance-to-default, real size, and real sales growth;

with Yit we control for macro-financial conditions using U.S. real GDP growth and the first

three principal components of the U.S. treasury yield curve, as estimated by Gürkaynak et

al. (2007); and αi denotes firm fixed effects. As always, confidence intervals are constructed

using two-way clustered standard errors by firm i and month t (Cameron et al., 2011).

Figure 6 presents the results from estimating equation (6) with xit = EBPit. Panel 6a

highlights that a shock tightening in monetary policy predicts a significant fall in investment

9In Appendix C, we show that our results from this section are similar when using the Jarociński and
Karadi (2020) monetary policy shock (see Figures C.9, and C.10).
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Figure 7
Monetary Policy’s Effect on Firm-Level Investment by Firm Quantity-of-Risk

(a) Conditional on Distance to Default
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Note. Figure 7 reports the dynamic effects (β2) of the interaction between within-firm variation in a
firm’s quantity-of-risk xi,t and a Bu et al. (2021) monetary policy shocks ([xit−1−Ei(xit)]εmt ), where
xi,t is ddi,t in Panel 7a and is levi,t in Panel 7b, on the h-period Investment of firm i, logKit+h −
logKit, from regression (6). The frequency of the data is quarterly. The inner and outer shaded areas
correspond to the 68% and 90% confidence intervals constructed using two-way clustered standard
errors by firm i and quarter t (Cameron et al., 2011), respectively, implemented with the statistical
module of Correia (2016).

for the average firm. In Panel 6b, we see that this effect is larger for low price-of-risk (low

EBP) firms.

We then re-estimate (6) using distance-to-default and leverage as measures of financial

position. The dynamic interaction effect coefficients are displayed in Figure 7. Consistent

with Ottonello and Winberry (2020), we find that investment done by low leverage and high

distance-to-default—low quantity of risk— firms is relatively more responsive to monetary

policy shocks.

Again, in Appendix C we estimate a variant of equation (6) with two monetary policy

shock interaction terms: one with the EBP; and a second with a measure of the quantity

of firm risk. Figure C.2 shows that the significance of the quantity-of-risk interactions falls

slightly, while the effects on the price-of-risk interaction are generally unchanged or even

stronger.

Our results thus far point to a tension: monetary policy loosenings generate only a

small easing in the marginal borrowing rate of low price-of-risk (safe) firms but trigger
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a large increase in these firm’s investment. In the next section, we remedy this tension

by documenting, for the first time, heterogeneity in responsiveness of firm investment to

changes in a firm’s financial conditions.

5 Firm-Level EBP and Investment

In this section, we assess the direct role of firm financial conditions, the component of

credit spreads affected by monetary policy, on investment. First, we show that much of

the observed heterogeneity in monetary policy’s effects on investment works through firm

financial conditions. Next, we document that that investment done by low price-of-risk and

quantity-of-risk firms is the most responsive to changes in financial conditions. This helps

rationalize the disconnect between monetary policy’s effects on spreads and investment.

To begin, we augment our investment local projection (6) estimated in Section 4 with

the two components of credit spreads: the EBP and the predicted spread Ŝ:

logKit+h − logKit = β0 + β1ε
m
t +β2[xit−1 − Ei(xit)]εmt + β3EBPit + β4Ŝit

+
3∑
l=1

γ
′

lZit−l +
3∑
l=1

γ
′

lYt−l + αi + eith, (7)

Figure 8 plots the marginal effects (β3) of EBPit on investment at different horizons

from estimating (7). The results highlight that a rise in EBPit, a deterioration in firm

i’s financial conditions, predicts a significant and persistent fall in firm i’s investment, on

average. At its peak roughly 8 quarters after the shock, a 100 basis point increase in firm

i’s EBP is associated with a 2.5 percentage point drop in its investment. Importantly,

Figure C.3 in Appendix C shows that significance and magnitude of the interaction term

[xit−1 − Ei(xit)]εmt estimated from (7) fall considerably relative to estimates from Section

4. This suggests that much of the observed heterogeneity in monetary policy’s effects on

investment was working through the excess bond premium component credit spreads.10

10Figure C.4 plots the dynamic response of Ŝ on investment and shows that its effects are larger than
the EBP. This points to a further tension for monetary policy, as monetary policy has no ability to regulate
Ŝ.
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Figure 8
Firm-Level Effects of EBP on Investment
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Note. Figure 8 reports the dynamic effects (β3) of the Excess Bond Premium (EBP) on the h-period
Investment of firm i logKit+h − logKit from regression (7), where the frequency of the data is
quarterly. The inner and outer shaded areas correspond to the 68% and 90% confidence intervals
constructed using two-way clustered standard errors by firm i and quarter t (Cameron et al., 2011),
respectively, implemented with the statistical module of Correia (2016).

To better understand the heterogeneous effects of EBP on investment, we estimate an

augmented version of specification (7):

logKit+h − logKit =β1ε
m
t + β2EBPit + β3[xit−1 − Ei(xit)]εmt + β4[xit−1 − Ei(xit)]EBPit

+β5Ŝit + θ
′

1Sit−1 +
3∑
l=1

γ
′

lZit−l +
3∑
l=1

δ
′

lYt−l + β0 + αi + eith, (8)

which crucially adds the interaction term [xit−1 − Ei(xit)]EBPit between the within-firm

variation in a firm’s financial position and the EBP .11 Figure 9 plots the dynamic inter-

action effects β4 for each of our firm financial position indicators xit. For both distance-

to-default and EBP in Panels 9a and 9b, respectively, the results suggest that investment

done by low quantity-of-risk and price-of-risk firms is substantially more responsive to

movements in financial conditions, as compared to firms at the other end of the distribu-

11It also controls for both credit spread components in Sit.
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Figure 9
Firm-Level EBP’s Effect on Investment by Firm Financial Position

(a) Conditional on Price-of-Risk (EBP)
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Note. Figure 9 reports the dynamic effects (β4) of the interaction between within-firm variation in a
firm’s financial position xi,t and the EBP, [xit−1 − Ei(xit)]εmt , where xi,t is the price of risk (EBP)
in Panel 9a, the distance to default ddi,t in Panel 9b and leverage levi,t in Panel 9c, on the h-period
Investment of firm i, logKit+h− logKit, from regression (8). The frequency of the data is quarterly.
The inner and outer shaded areas correspond to the 68% and 90% confidence intervals constructed
using two-way clustered standard errors by firm i and quarter t (Cameron et al., 2011), respectively,
implemented with the statistical module of Correia (2016).

tion. While the point estimate has the correct sign, we find little evidence of heterogeneity

based on leverage.12

These findings help settle the disconnect between monetary policy’s effects on credit

spreads and investment. In Ottonello and Winberry (2020)’s model, low-risk firms are

more responsive to monetary policy due to relatively easier access to funding. However, we

12In Appendix C, Figure C.5 shows that this heterogeneity by price-of-risk is robust to including an
interaction with quantity-of-risk, whereas the quantity-of-risk interaction effects become more muted.
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showed this cannot be the case since high price- and quantity-of-risk firms’ credit spreads

are more responsive to monetary shocks. Instead, we show that the heterogeneous effects

of monetary policy on firm investment works through their credit spreads: safer firms have

a higher elasticity of investment to changes in their financial conditions. This is may be

due to low price- and quantity-of-risk firms having access to more productive investment

opportunities.

6 Conclusion

In this paper, we trace the effects of U.S. monetary policy, through the distribution of

firm financial conditions (the EBP), and onto firm investment. We find that in response to

changes in funding costs, low price- and quantity-of-risk firms’ investment responds more

than high-risk firms’. This helps rationalize the puzzle that risky firms’ spreads but safe

firms’ investment is more responsive to monetary policy. In Appendix B, we show that

these granular findings also exist in the aggregate.
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A Appendix: Distance-to-Default and the EBP

As in Gilchrist and Zakraǰsek (2012), we obtain, from the Lehman/Warga and Merrill

Lynch databases, the month-end secondary-market bond prices for the sample of U.S.

firms covered by the S&P’s Compustat database and the Center for Research in Security

Prices (CRSP). We calculate then credit spread Sit[k] for bond k issued by firm i at time t

as the difference between the bond’s yield and the yield on a U.S. Treasury yield with the

exact same maturity, using estimates from Gürkaynak et al. (2007).

Next, following Gilchrist and Zakraǰsek (2012), we decompose the firm-level credit

spreads Sit[k] into a component driven by firm-level default risk—the predicted spread—and

a residual component—the EBP—which we interpretet as the financial sector’s subjective

risk sentiment vis-a-vis firm i with respect to bond k. To do so, we assume that the log of the

bond-k credit spread at time t is a linear function of issuing firm i’s Merton (1974) Distance-

to-Default (DDit), which we discuss in detail shortly, and a vector of bond characteristics

Zit[k] such that

logSit[k] = βDDit + γ
′
Zit[k] + εit[k] (A.1)

where Zit[k] includes the bond’s duration, amount outstanding, coupon rate and age.13

Further, we include both industry and credit rating fixed effects.

Assuming the error term is normally distributed, the predicted spread of bond k issued

by firm i at time t is given by

Ŝit[k] = exp
[
β̂DDit + γ̂

′
Zit[k] +

σ̂2

2

]
(A.2)

where β̂ and γ̂ denote the OLS estimates of the parameters β and γ, respectively, and

σ̂2 denotes the estimated variance of the error term. Finally, we define the excess bond

13Additionally, we include interaction terms between DDit, Zit[k], the first 3 principal components of
the U.S. Treasury yield curve and an indicator variable that equals one if the bond is callable and zero if
not.
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premium on firm i’s bond k at time t as

EBPit[k] = Sit[k]− Ŝit[k] (A.3)

The key predictor in our credit spread model from above is the firm’s Merton (1974)

Distance-to-Default (DD), an indicator of the firm’s expected default risk. The DD frame-

work assumes that the total value of the firm, denoted by V , is governed by following the

stochastic differential equation:

dV = µV V dt+ σV V dZt (A.4)

where µV is the expected growth rate of V , σV is the volatility of V , and Zt denotes the

standard Brownian motion. Assuming additionally that the firm issues a single bond with

face-value D that matures in T periods, Merton (1974) shows that the value of the firm’s

equity E can be viewed as a call option on the underlying value of the firm V , with a strike

price equal to the face-value of the firm’s debt D maturing at T .

Using the Black and Scholes (1973) pricing formula for a call option, the value of the

firm’s equity is then

E = V Φ(δ1)− e−rTDΦ(δ2) (A.5)

where r denotes the risk-free interest rate, Φ(.) denotes the cumulative standard normal

distribution function, and

δ1 =
log(V/D) + (r + 0.5σ2

V )T

σ2
V

√
T

and δ2 = δ1 − σV
√
T .

Using A.5, by Ito’s lemma, we can relate the volatility of the firm’s value to the volatility

of the firm’s equity

σE =
V

E
Φ(δ1)σV (A.6)
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Assuming a time to maturity of one year (T = 1) and daily data on one-year Treasury

yields r, the face value of firm debt D, the market value of firm equity E, and its one-year

historical volatility σE, A.5 and A.6 provide a two equation system that can be used to solve

for the two unknowns V and σV .14 However, as emphasized in Vassalou and Xing (2004),

large swings in market leverage V/E lead to excessive volatility in the estimated value

for σV from A.6, which are at odds with data on the frequency of default and asset price

movements. To address this, we follow Gilchrist and Zakraǰsek (2012) by implementing the

iterative procedure from Bharath and Shumway (2008), which proceeds in two steps. First,

we initialize the procedure by setting σV = σE for each day in a one-year rolling window

and then substitute σV into A.5 to solve for the market value V for each of these days.

Second, from our new estimated V series, we calculate a year-long series of daily log-returns

to the firm’s value, ∆ log V , which we then use to compute a new estimate for σV as well

as for µV .15. We then iterate on σV until convergence.

Given solutions (V, σV , µV ) to the Merton DD model, we are able to calculate the

firm’s Distance-to-Default over a one-year horizon as

DD =
log(V/D) + (µV − 0.5σ2

V )

σV
(A.7)

Since default at T occurs when a firm’s value falls below the value of its debt (log(V/D) <

0), the DD captures the distance a firm is above default, given an expected asset growth

rate µV and volatility σV until T, in units of standard deviations.

14Daily data for E is from CRSP and is used to calculate a daily 252-day historical rolling-window
equity volatility σE . Quarterly data on firm debt D = Current Liabilities + 1

2Long-Term Liabilities is from
Compustat and is linearly interpolated to form a daily series.

15Using the formulas σV =
√

252 ∗ σ(∆ log V ) and µV = 252 ∗ µ(∆ log V )
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Figure B.1
Monetary Policy’s Effect on Cross-Sectional Distribution of EBP

Note. Figure B.1 reports how the full cross-sectional distribution of EBP evolves over time after
a monetary policy shock. These distributions are estimated using a two-step procedure analogous
to Adrian et al. (2019). First, we estimate how the quantiles evolve after a monetary policy shock
using the VAR described in of Section B. Second, we approximate the probability density function
at each time period using a skewed-t distribution. Prior to the monetary policy shock, we suppose
the cross-sectional distribution of EBPs is the unconditional one over the sample 1994M1–2019M12.

B Appendix: Aggregate Effects of EBP Heterogeneity

We begin by quantifying monetary policy’s effects on the full cross-sectional distribution

of EBP, where we find considerable changes to the shape of these distributions. We follow

a two-step procedure analogous to Adrian et al. (2019). First, we estimate the IRFs of

the 95th, 75th, 50th, 25th and 5th quantiles of the cross-sectional distribution of EBP

to a monetary policy shock using Bayesian VARs with the cumulative Bu et al. (2021)

monetary policy shock, industrial production, consumer prices, and different quantiles of

the EBP distribution. 16 Second, we approximate the probability density function at each

16We use the median IRFs of these variables.
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time period using a skewed-t distribution. Prior to the monetary policy shock, we suppose

the cross-sectional distribution of EBPs is the unconditional one over the sample 1994M1–

2019M12. Figure B.1 shows the results, capturing the gradual increase in the first three

moments of cross-sectional distribution of EBP until the 12th month after the monetary

policy shock, as well as the return of the distribution to its previous shape.

Next, we forecast growth in economic activity using percentiles of the EBP distribution.

Specifically, we estimate:

OhYt+h = β0 + β1EBP
mean
t + β2EBP

τ
t + γ

′
YCt + OYt + εt+h (B.1)

where OhYt+h denotes the h-period-ahead growth rate of either GDP, domestic private in-

vestment, or industrial production, EBPmean
t is the mean of the EBP distribution, EBP τ

t

denotes a percentile of the EBP distribution, and YCt are the first three principal compo-

nents (level, slope and curvature) of the U.S. Treasury yield curve calculated by Gürkaynak

et al. (2007).17

Tables B.1a and B.1b report the regression coefficients from estimating (B.1) using

the 25th and 75th percentiles of the EBP distribution, respectively. Table B.1a shows that

EBP 25
t drowns out the forecasting power of EBPmean

t for one-year-ahead growth in eco-

nomic activity. This suggests that financial sector risk aversion towards the large, safe

firms in the left-tail of the EBP distribution is of particular significance for the health

of the macroeconomy, an important nuance to the key result in Gilchrist and Zakraǰsek

(2012). Conversely, although the significance is mixed, the marginal effects for EBP 75
t in

Table B.1b shows that increases in EBP for the small, risky firms in the distribution ac-

tually stimulates growth, after controlling for the mean firm. Together, these aggregate

forecasting results confirm that the wider cross-sectional EBP distribution, and in partic-

ular the distributions’ left-tail, provides a useful signal of future economic activity above

the information contained in the “mean” firms’ financial conditions.

17H-period-ahead growth of Y is calculated as OhYt+h = c
h+1 ln

(
Yt+h

Yt−1

)
, where c = 400 for quarterly

variables (GDP and INV) and c = 1200 for monthly variables (IP).
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Table B.1
The Cross-Sectional EBP Distribution and One-Year-Ahead Economic Activity

(a) 25th Percentile

Variables GDP INV IP

EBPmean
t 0.37 0.71 0.76*

(0.25) (1.26) (0.42)

EBP25
t -0.91*** -2.69** -2.02***

(0.25) (1.25) (0.37)

Obs 180 180 540

R2 0.455 0.332 0.279

Controls YES YES YES

(b) 75th Percentile

Variables GDP INV IP

EBPmean
t -1.09*** -3.72* -4.39***

(0.40) (2.01) (0.69)

EBP75
t 0.68 2.04 3.40***

(0.51) (2.40) (0.67)

Obs 180 180 540

R2 0.417 0.317 0.264

Controls YES YES YES

Note. Table B.1 reports the marginal effects of EBPmeant and EBP τt for τ ∈ {25, 75} in Panels
B.1a, and B.1b, respectively, from estimating regression (B.1) for Y ∈ {GDP, INV, IP}. Controls
are the first three principal components of the U.S. Treasury yield curve and the contemporaneous
growth rate of the dependent variable. Standard errors are based on 1000 bootstrapped samples
and are reported in parentheses. Statistical significance tests the null hypothesis that the coefficient
associated to a regressor is zero, where *, **, and *** denote significance levels of 0.1, 0.05 and 0.01,
respectively.

C Appendix: Additional Results
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Figure C.1
Monetary Policy on EBP: Double Interaction by Price- and Quantity-of-Risk

(a) β̂3: EBP Interaction
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(c) β̂3: EBP Interaction
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Note. Figure C.1 reports the results for a horserace between (A) the interaction of within-
firm variation in a firm’s price-of-risk EBPi,t and a Bu et al. (2021) monetary policy shocks
([EBPit−1 − Ei(EBPit)]εmt ) and (B) the interaction of within-firm variation in a firm’s quantity-of-
risk xi,t and a Bu et al. (2021) monetary policy shocks ([xit−1−Ei(xit)]εmt ), on the h-period change
in EBP, EBPit+h[k] − EBPi,t[k]. Panels C.1a and C.1b report the interaction coefficients β3 and
β2, respectively, from estimating equation C.1 with xi,t = ddi,t, while Panels C.1c and C.1d report
the interaction coefficients β3 and β2, respectively, from estimating equation C.1 with xi,t = levi,t.
The frequency of the data is monthly. The inner and outer shaded areas correspond to the 68% and
90% confidence intervals constructed using two-way clustered standard errors by firm i and month t
(Cameron et al., 2011), respectively, implemented with the statistical module of Correia (2016).

EBPit+h[k]− EBPit[k] =β0 + β1ε
m
t + β2[xit−1 − Ei(xit)]εmt + β3[EBPit−1 − Ei(EBPit)]εmt

+ β4EBPit−1 +
3∑
l=1

γ
′

lZit−l +
3∑
l=1

δ
′

l∆Yt−l + αk + eikth, (C.1)
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Figure C.2
Monetary Policy on Investment: Double Interaction by Price- and Quantity-of-Risk

(a) β̂3: EBP Interaction
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Note. Figure C.2 reports the results for a horserace between (A) the interaction of within-firm
variation in a firm’s price-of-risk EBPi,t and a Bu et al. (2021) monetary policy shocks ([EBPit−1−
Ei(EBPit)]εmt ) and (B) the interaction of within-firm variation in a firm’s quantity-of-risk xi,t and
a Bu et al. (2021) monetary policy shocks ([xit−1 − Ei(xit)]εmt ), on the h-period change firm i’s
Investment, logKit+h − logKit. Panels C.2a and C.2b report the interaction coefficients β3 and β2,
respectively, from estimating equation C.2 with xi,t = ddi,t, while Panels C.2c and C.2d report the
interaction coefficients β3 and β2, respectively, from estimating equation C.2 with xi,t = levi,t. The
frequency of the data is quarterly. The inner and outer shaded areas correspond to the 68% and
90% confidence intervals constructed using two-way clustered standard errors by firm i and month t
(Cameron et al., 2011), respectively, implemented with the statistical module of Correia (2016).

logKit+h − logKit = β0 + β1ε
m
t +β2[xit−1 − Ei(xit)]εmt + β3[EBPit−1 − Ei(EBPit)]εmt

+
3∑
l=1

γ
′

lZit−l +
3∑
l=1

γ
′

lYt−l + αi + eith, (C.2)
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Figure C.3
Monetary Policy on Investment by Firm Financial Position, Augmented with EBP

(a) β̂2: Distance to Default Interaction
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(b) β̂2: Leverage Interaction
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Note. Figure C.3 reports the dynamic interaction effects (β2) of within-firm variation in a firm’s
financial position xi,t and a Bu et al. (2021) monetary policy shocks ([xit−1 − Ei(xit)]εmt ) on the
h-period Investment of firm i logKit+h − logKit from regression (C.4), which includes the EBPi,t.
xi,t is distance to default in Panel C.3a, leverage in Panel C.3b, and price-of-risk (EBP) in Panel
C.3c. The frequency of the data is quarterly. The inner and outer shaded areas correspond to the
68% and 90% confidence intervals constructed using two-way clustered standard errors by firm i and
quarter t (Cameron et al., 2011), respectively, implemented with the statistical module of Correia
(2016).

logKit+h − logKit = β0 + β1ε
m
t +β2[xit−1 − Ei(xit)]εmt + β3EBPit + β4Ŝit

+
3∑
l=1

γ
′

lZit−l +
3∑
l=1

γ
′

lYt−l + αi + eith, (C.3)
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Figure C.4
Firm-Level Effects of Ŝ on Investment
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Note. Figure C.4 reports the dynamic effects (β4) of the Predicted Spread (Ŝ) on the h-period
Investment of firm i logKit+h − logKit from regression (C.4), where the frequency of the data is
quarterly. The inner and outer shaded areas correspond to the 68% and 90% confidence intervals
constructed using two-way clustered standard errors by firm i and quarter t (Cameron et al., 2011),
respectively, implemented with the statistical module of Correia (2016).

logKit+h − logKit = β0 + β1ε
m
t +β2[xit−1 − Ei(xit)]εmt + β3EBPit + β4Ŝit

+
3∑
l=1

γ
′

lZit−l +
3∑
l=1

γ
′

lYt−l + αi + eith, (C.4)
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Figure C.5
EBP on Investment: Double Interaction with Price- and Quantity-of-Risk

(a) β̂3: EBP Interaction
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(d) β̂4: Leverage Interaction
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Note. Figure C.5 reports the results for a horserace between (A) the interaction of within-firm
variation in a firm’s price-of-risk and the EBP ([EBPit−1−Ei(EBPit)]EBPit) and (B) the interaction
of within-firm variation in a firm’s quantity-of-risk xi,t and the EBP ([xit−1−Ei(xit)]EBPit), on the
h-period change firm i’s Investment, logKit+h− logKit. Panels C.5a and C.5b report the interaction
coefficients β3 and β4, respectively, from estimating equation C.5 with xi,t = ddi,t, while Panels
C.5c and C.5d report the interaction coefficients β3 and β4, respectively, from estimating equation
C.5 with xi,t = levi,t. The frequency of the data is quarterly. The inner and outer shaded areas
correspond to the 68% and 90% confidence intervals constructed using two-way clustered standard
errors by firm i and month t (Cameron et al., 2011), respectively, implemented with the statistical
module of Correia (2016).

logKit+h − logKit =β1ε
m
t + β2EBPit + β3[EBPit−1 − Ei(EBPit)]EBPit + β4[xit−1 − Ei(xit)]EBPit

+β5[xit−1 − Ei(xit)]εmt + β6[EBPit−1 − Ei(EBPit)]εmt

+β7Ŝit + θ
′

1Sit−1 +
3∑
l=1

γ
′

lZit−l +
3∑
l=1

δ
′

lYt−l + β0 + αi + eith, (C.5)
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Figure C.6
Monetary Policy’s Effect on Bond-Level Credit Spreads

(a) EBP
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Note. The analogue of Figure 3 with a Jarociński and Karadi (2020) monetary policy shock.

Figure C.7
Monetary Policy’s Effect on Bond-Level EBP by Firm Price-of-Risk
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Note. The analogue of Figure 4 with a Jarociński and Karadi (2020) monetary policy shock.
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Figure C.8
Monetary Policy’s Effect on Bond-Level EBP by Firm Quantity-of-Risk

(a) Distance to Default
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Note. The analogue of Figure 5 with a Jarociński and Karadi (2020) monetary policy shock.

Figure C.9
Monetary Policy’s Effect on Firm-Level Investment

(a) β̂1: Unconditional
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(b) β̂2: EBP Interaction
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Note. The analogue of Figure 6 with a Jarociński and Karadi (2020) monetary policy shock. .
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Figure C.10
Monetary Policy’s Effect on Firm-Level Investment by Firm Quantity-of-Risk

(a) β̂2: Distance to Default Interaction
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(b) β̂2: Leverage Interaction
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Note. The analogue of Figure 7 with a Jarociński and Karadi (2020) monetary policy shock. .
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