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Abstract

We identify the S-Shaped consumption utility by reconciling consumption de-

cisions with asset returns. Different from the concave-shaped utility, the S-shaped

consumption utility predicts a possible negative correlation between low quantiles of

consumption growth and asset returns, for which we find evidence from micro-level

consumption data. The “partial” negative correlation accounts for the low correlation

between consumption growth and asset returns, which is at the heart of many pricing

puzzles. Using an estimable asset pricing model built upon micro consumption, we

show that the S shape and the partial negative correlation quantitatively solve the eq-

uity premium puzzle.
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1 Introduction

This paper shows that asset pricing based on micro consumption helps identify S-shaped

consumption utility and that the S-shaped consumption utility solves the equity premium

puzzle. We empirically find that asset returns correlate negatively with many individuals’

low-quantile consumption growth. Using this finding and its implications for asset pricing,

we demonstrate that the consumption utility functions cannot be globally concave-shaped.

We show that many asset pricing puzzles root in the application of concave-shaped utility

and that an S-shaped consumption utility offers a plausible solution. The estimation results

of our structural model based on micro consumption data confirm that the convex part in

the S-shaped utility, together with the above mentioned negative correlation, can account

for the high equity premium.

When confronted with financial data, consumption-based models do not perform well.

Mehra and Prescott (1985) find that consumption-based asset pricing models (C-CAPM)

fail to explain the high equity premium. Weil (1989) argues that the C-CAPMs are hard

to rationalize the low risk-free rate. Shiller (1981), LeRoy and Porter (1981), and Gross-

man and Shiller (1981) show that stock prices are too volatile to be explained by economic

fundamentals, such as consumption or dividends. Economists refer to these anomalies as

the equity premium puzzle, risk-free rate puzzle, and equity volatility puzzle, respectively.

These puzzles and many other related asset pricing puzzles discussed later in Section 2

indicate a possible giant gap in our understanding of consumption behaviors. More specif-

ically, the consumption utility functions widely used in economics may be flawed.

Economists have explored many types of utility functions attempting to solve the asset

pricing puzzles, including utility with inner or external habits (e.g., Constantinides 1990,

Abel 1990, and Campbell and Cochrane 1999), recursive utility (e.g., Epstein and Zin 1989,

Bansal and Yaron 2004), ambiguity aversion (e.g., Ju and Miao 2012), reference-dependent

preferences (e.g., Benartzi and Thaler 1995, Barberis et al. 2001, Yogo 2008, Routledge

and Zin 2010, and Barberis et al. 2015), to name a few. However, economists do not reach
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a consensus on the consumption utility functional form, and asset pricing puzzles are still

largely unsolved after four decades of research.

An alternative that the literature has not explored is the S-shaped consumption utility.

Kahneman and Tversky’s (1979) experimental evidence suggests that people’s utility func-

tion is S-shaped. Ju and Li (2021) present empirical findings from micro consumption data

that support the S-shaped consumption utility. However, the belief that the consumption u-

tility function is concave-shaped is deeply ingrained in the extant studies. The literature of

the past four decades sees virtually no application of the S shape in modeling consumption

behaviors. To justify the S-shaped consumption utility, one needs (1) provide empirical ev-

idence and convincing reasoning that reject the concave-shaped consumption utility and (2)

solve the consumption-based asset pricing puzzles using the S-shaped consumption utility.

We accomplish our goals using a qualitative model and an estimable structural model.

The qualitative asset pricing model based on an S-shaped consumption utility suggests

that the correlation between an individual’s consumption growth and asset returns can be

negative. The negative correlation is not a prediction of concave-shaped consumption util-

ity. When an individual with a concave-shaped consumption utility function plans to lower

her marginal utility, she must raise her consumption. In contrast, an individual with an

S-shaped consumption utility has two types of choices to reduce her marginal utility; she

can either increase or decrease her consumption. Given a positive risk premium, the corre-

lation between risky returns and the marginal utility of consumption is negative. Therefore,

the correlation between the risky returns and consumption growth of an individual with a

concave-shaped utility is positive; however, the correlation can be positive or negative for

individuals with an S-shaped consumption utility. The negative correlation arises because

of the convex section of the S-shaped consumption utility. An individual decreases her

consumption when the asset return rises because the loss of utility can be compensated or

over-compensated by consuming more in the future.

Finding the negative correlation between consumption growth and risky returns will

reject the globally concave-shaped consumption utility. The negative correlation implies
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that the risky asset serves as “insurance” against consumption risks. Individuals with a

concave-shaped consumption utility demand a negative risk premium of the “insurance”.

However, of the same asset, the remaining risk-averse individuals command a positive risk

premium because their consumption growth correlates positively with the risky return. We,

therefore, arrive at a contradiction because the law of one price does not hold.

We provide empirical evidence from micro consumption data rejecting the concave-

shaped utility. The challenge in identifying the above negative correlation is that there are

also individuals for whom the correlation is positive. The correlation for any single indi-

vidual can be positive or negative, depending on her specific situation. Our identification

strategy takes advantage of a particular implication of the S-shaped consumption utility.

The qualitative model predicts that low quantiles of consumption growth are more likely

to correlate negatively with asset returns than the top quantiles. We confirm this prediction

by running a simple quantile regression. For some subgroups, we find a significantly nega-

tive correlation between low quantiles of consumption growth and asset returns (including

equity returns and risk-free returns).

Our qualitative asset pricing model and the above initial empirical evidence help ex-

plain asset pricing puzzles. First, our empirical results contribute to the understanding

of the fundamental problem in asset pricing. Presumably, most economists would agree

that many consumption-based asset pricing puzzles link closely to the low covariance be-

tween consumption growth and asset returns (see Cochrane and Hansen 1992, Mehra and

Prescott 2003, and Campbell 2003). The established negative correlation accounts for the

low covariance if it cancels out the positive correlation to a large extent (shown later in the

structural model estimation). Second, the qualitative model explains how the equity pre-

mium puzzle arises. This model predicts that the individuals whose consumption growth

correlates negatively with equity returns are risk-seeking toward consumption risks. They

demand a positive equity premium because stocks serve against their will by hedging a-

gainst the consumption risks. If researchers mistakenly model the risk seekers’ behaviors

using the concave-shaped consumption utility, the equity premium they demand becomes
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negative. Therefore, the generated aggregated equity premium can be much smaller than

the observed one, even if the degree of relative risk aversion is large.

Our structural model estimation shows that the S-shaped consumption utility quanti-

tatively solves both the equity premium puzzle and the risk-free rate puzzle. The model

builds upon micro consumption and reference-dependent preference. We restrict the gain

functions to be concave and the loss functions to be convex. The reference is a latent ran-

dom variable. We estimate the utility function and the conditional distribution of reference

points by minimizing the pricing errors of the risk-free rate and excess return rates of Fama

and French’s 100 portfolios sorted by size and book-to-market ratio. The estimation shows

that the S-shaped consumption utility performs very well in explaining asset prices. First,

our model accounts for a large proportion (91.80%) of the market equity premium. The

estimated degree of relative risk aversion is a function of the consumption-reference ratio,1

lying within a reasonable range. It is smaller than two with a probability of 98.36%. In

sharp contrast to existing models in the literature, the average individual in our model has

a probability close to 50% being (locally) risk-seeking. The success in explaining the high

equity premium indicates that the proportion of stockholders who respond negatively to

the changes in equity returns is significant. Second, the model fits the risk-free rate almost

perfectly. Therefore, the S-shaped consumption utility also helps solve the risk-free rate

puzzle (see Weil, 1989). The model predicts a low risk-free interest rate because many

individuals save. Third, the estimated volatility of the pricing kernel is high, and Hansen

and Jagannathan’s (1991) inequalities hold for all of the test assets. We also estimate an

alternative model that restricts the gain-loss utility function to be globally concave. Even

though its performance is equally good in fitting the risk-free rate and the market equity

premium, the estimated degree of relative risk aversion given a high consumption-reference

ratio is absurdly large.

1The consumption-reference ratio refers to the consumption divided by the reference level.
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2 Key problems in C-CAPMs with concave utility

We will first review the literature and summarize the fundamental problems of traditional

asset pricing models based on concave-shaped consumption utility. The main conclusions

are two-fold. Firstly, many consumption-based asset pricing puzzles link closely to the

low covariance between per capita consumption growth and stock returns. Secondly, many

small estimates of the intertemporal elasticity of substitution in the literature indicate a low

correlation between consumption growth and interest rates, which challenges many extant

C-CAPMs and deserves further study.

We consider a simple C-CAPM in which a representative agent maximizes her life-time

expected utility:

E

[
∞

∑
t=0

β
tU(ct)|I0

]
, 0 < β < 1, (1)

where ct is her consumption; It is her information set at time t; and β is the subjective time

discount factor. The utility function U(·) is concave-shaped. For expositional simplici-

ty, we consider a constant relative risk aversion utility function U(ct) =
c1−γ

t −1
1−γ

, where γ

measures the degree of relative risk aversion. The asset pricing equations are

E

[
β

(
ct+1

ct

)−γ

Re
t+1|It

]
= 1, (2)

and

E

[
β

(
ct+1

ct

)−γ

R f
t |It

]
= 1, (3)

where Re
t+1 and R f

t denote the equity return rate and risk-free return rate, respectively. The

term β

(
ct+1
ct

)−γ

is called the stochastic discount factor (SDF) or the pricing kernel.

To illustrate the pricing puzzles, we closely follow Hansen and Singleton (1983), Mehra

and Prescott (2003), and Campbell (2003) to derive, from (2) and (3), the relationships be-

tween the logarithms of consumption growth and asset returns. Let gt+1 = log(ct+1/ct),

re
t+1 = log(Re

t+1), r f
t = log(R f

t ), Yt = (gt ,re
t ,r

f
t )
′, and ψt denote the information about
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{Yt−s}∞
s=0. We assume that Yt is a stationary Gaussian process. Thus, we have

2E(re
t+1− r f

t |ψt)+ var(re
t+1|ψt) = 2γcov(gt+1,re

t+1|ψt), (4)

r f
t = γE(gt+1|ψt)−

γ2var(gt+1|ψt)

2
− logβ. (5)

Equation (4) relates the log risk premiums and the (conditional) variance of stock re-

turns to the covariance between consumption growth and stock returns. As cov(gt+1,re
t+1|ψt)

is extremely small, γ must be absurdly large to make Equation (4) hold. Thus, the equi-

ty premium puzzle and the equity volatility puzzle arise from the low covariance between

consumption growth and stock returns.

Equation (5) can illustrate the risk-free rate puzzle. The second term at its right-hand

side represents a precautionary savings effect. When per capita consumption is used, the

conditional variance var(gt+1|ψt) is so small that the precautionary savings effect is neg-

ligible compared to the first term in Equation (5). Thus, the risk-free rate generated by

the model increases as γ rises. To explain the equity premium, the model needs a large γ.

Consequently, the model produces a much larger risk-free rate than observed in the mar-

ket. Therefore, the risk-free rate puzzle is associated with the low variance of per capita

consumption growth.

The low covariance between consumption growth and stock returns is also crucial to

understanding the stock holding puzzle and predictability puzzle. Given the high equity

premium, Mankiw and Zeldes (1991) and Haliassos and Bertaut (1995) think it is puzzling

that very few people participate in the stock market. Fama and French (1988) and Camp-

bell and Shiller (1988) find a perplexing fact that price-dividend ratios predict long-horizon

stock prices. These anomalies are dubbed the stock market participation puzzle (or stock-

holding puzzle), and long-run stock return predictability puzzle (or predictability puzzle),

respectively. To solve the stock holding puzzle, we must account for the low covariance be-

tween the stock returns and nonstockholders’ consumption growth. If the covariance were

(positively) large, then it would not be puzzling that few people hold stocks because par-
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ticipating in the stock market would have amplified their consumption risks. Regarding the

predictability puzzle, Barberis and Thaler (2003) make a convincing point: “a resolution of

the (equity) volatility puzzle is simultaneously a resolution of the predictability puzzle.” 2

Moreover, the correlation between consumption growth and interest rates matters for

consumption-based asset pricing. The recent developments of asset pricing models sug-

gest that a high value of the intertemporal elasticity of substitution (IES) helps explain the

pricing anomalies. For example, Bansal and Yaron (2004) and Ju and Miao (2012) set IES

to 1.5 in their calibration. However, most empirical estimates of IESs are close to zero

(see the meta-analysis by Havránek (2015)). Therefore, asset pricing puzzles may also be

associated with the small IESs or, equivalently, the low correlation between consumption

growth and interest rates.

In summary, low covariance between consumption growth and asset returns is at the

heart of many pricing puzzles. Substituting micro consumption for per capita consumption

in traditional C-CAPMs helps address the small-variance problem, but the low-correlation

issue becomes the focus. In the following, we show that the low correlation arises from an

S-shaped consumption utility and that this utility helps solve various asset pricing puzzles.

3 Asset pricing based on S-shaped consumption utility

This section presents a simple theoretical model, showing the implications of the S-shaped

consumption utility for asset pricing. Specifically, we explain how this utility helps explain

consumption-based asset pricing puzzles.

Consider a three-period model with heterogeneous agents indexed by i ∈ {1, . . . ,N}.
2 Barberis and Thaler’s (2003) argument is based on the identity for the equity return rate Re

t+1:

Re
t+1 =

Pt+1 +Dt+1

Pt
=

1+Pt+1/Dt+1

Pt/Dt

Dt+1

Dt
, (6)

where Pt and Dt denote the equity price and dividend, respectively. From Equation (6), it is safe to say that
any model that captures the large volatility in stock returns also generates a large variance in the process
Pt/Dt . When Pt/Dt reverts from a larger than average value to its mean, the stock price should decrease
because a C-CAPM generally does not allow Pt/Dt to forecast dividend flows.
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Each period, individuals are endowed with a certain amount of consumption goods. The

endowment information in every period is known to each individual in period 1. Two

financial markets are available. First, individuals can invest in a risky security market. The

fund raised by this security is used to finance a risky project in period 1. At a good state with

probability p ∈ (0,1), the project offers a return rate R̄e
2 (greater than one) to the security

holders in period 2; at a bad state with probability 1− p, its return rate is Re
2 (smaller than

one). Let the random variable Re
2 denote the risky return rate. Starting from period 2, no

risky project is available, and all the uncertainty in this model resolves. Second, individuals

can borrow and lend in periods 1 and 2. Defaulting is prohibited. Denote by R f
t (t = 1,2)

the default-free interest rate between period t to period t +1. Let Uit denote the individual

i’s S-shaped utility function in period t ∈ {1,2,3} (Note that the main conclusions remain

if we assume concave utility functions for periods 1 and/or 3.). We assume that for all

i ∈ {1, . . . ,N}, the marginal utility U
′
it(cit) is positive for all cit in the real line. Individual

i’s objective function is

max
{cit}3

t=1

E

[
3

∑
t=1

β
t−1Uit(cit)

]
,

where β is the subjective time discount factor and cit is her consumption.

We assume that there are no corner solutions in the equilibrium. Thus, the following

necessary conditions hold:

1 = β
U
′
i3(ci3)

U ′
i2(ci2)

R f
2 , ∀i. (7)

1 = E

[
β

U
′
i2(ci2)

U ′
i1(ci1)

Re
2

]
, ∀i, (8)

1 = E

[
β

U
′
i2(ci2)

U ′
i1(ci1)

R f
1

]
, ∀i. (9)

Equation (7) indicates that the marginal utility in period 2 is proportional to that in period

3. From Equations (8) and (9), we have

E
[
U
′
i2(ci2)(Re

2−R f
1)
]
= 0, ∀i. (10)
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Figure 1: State-contingent consumption plans under S-shaped consumption utility

As U
′
i2(ci2)> 0 and R̄e

2 > Re
2, we obtain from Equation (10) the following inequality for the

endogenously determined default-free interest rate,

R̄e
2 > R f

1 > Re
2. (11)

To discuss the properties of the marginal utility U
′
i2(ci2), we further restrict that the risk

premium be greater than zero, i.e.,

E[Re
2−R f

1 ]> 0. (12)

Combining Equations (10), (11), and (12), we conclude that the marginal utility U
′
i2(ci2)

at a good state must be smaller than that at a bad state. That is,

U
′
i2(ci2)|(Re

2 = R̄e
2) < U

′
i2(ci2)|(Re

2 = Re
2), ∀i.

In other words, for all i ∈ {1, . . . ,N}, the marginal utility, U
′
i2(ci2), correlates negatively

with the risky return rate, Re
2. If individual i’s utility function were concave, we would

conclude that Re
2 correlates positively with consumption growth ci,2/ci,1.

However, as the utility functions are S-shaped, Re
2 may be negatively correlated with
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some individuals’ consumption growth, whereas the correlations are positive for other-

s. Figure 1 qualitatively illustrates how the individuals with the S-shaped utility make

state-contingent consumption plans. The two sub-figures show individual i’s possible con-

sumption plans for periods 2 and 3. The tangent points between the solid lines and the

S-shaped utility curves (i.e., A, B, C, and D) are her potential planned choices for the bad

state (Re
2 = Re

2), and the tangent points between the dashed lines and the utility curves (i.e.,

E, F, G, and H) are her potential choices for the good state (Re
2 = R̄e

2). In period 2, her bad-

state choice may be point A or B. Correspondingly, her bad-state choice in period 3 may be

at point C or D. The combination (except the impossible combination (B,D)) she actually

chooses is determined by her specific preference and endowments. When the realized state

is Re
2 = R̄e

2, she implements her good-state plan. Compared with her bad-state consumption

choice, she may increase her period-2 consumption, moving from point A or B to point

E. Another individual with a different specification of preference and endowments may

decrease her period-2 consumption, moving from point A or B to F ; the reduction of con-

sumption in period 2 is used to finance more consumption in period 3 (change from point

C or D to G). Therefore, heterogeneous individuals with an S-shaped consumption utility

may have opposite consumption responses to the rise of the risky return rate. Similarly, as

the risky return rate falls, individuals may also have opposite consumption responses. For

example, some may decrease their period-2 consumption from the good-state choice E to

the bad-state choice A or B, while others may increase their period-2 consumption from the

choice F to A or B. Those who increase their period-2 consumption reduce their period-3

consumption, from G to C or D.

The above different consumption behaviors associated with the S-shaped consumption

utility help explain the low covariance between consumption growth and asset returns.

In the literature, the widely used consumption measure is per capita consumption. Let

Ct = ∑i cit denote the total consumption in period t. The growth rate of the per capita
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consumption is a weighted average of the individual consumption growth rate, i.e.,

Ct+1

Ct
=

∑i ci,t+1

Ct
= ∑

i

(
ci,t

Ct

)
ci,t+1

ci,t
, t = 1.

Denote by

A =

{
i ∈ {1, . . . ,N} : cov

(
ci2

ci1
,Re

2

)
< 0
}
,

the set of individuals whose consumption ci2 (or consumption growth ci2
ci1

) is negatively

correlated with the risky return rate. Let B = {1, . . . ,N}/A be the complement of A. We

decompose the per capita consumption growth rate into two parts:

Ct+1

Ct
= ∑

i∈A

(
ci,t

Ct

)
ci,t+1

ci,t
+∑

i∈B

(
ci,t

Ct

)
ci,t+1

ci,t
, t = 1. (13)

In our two-state setup, the two terms in the right-hand side of equation (13) are negatively

correlated. Thus, it is possible that var(Ct+1
Ct

) is much smaller than var(ci,t+1
ci,t

) for all i ∈

{1, . . . ,N}. Also, we have the following decomposition of the covariance between Ct+1
Ct

and

Re
t+1:

cov
(

Ct+1

Ct
,Re

t+1

)
= ∑

i∈A

[(
ci,t

Ct

)
cov
(

ci,t+1

ci,t
,Re

t+1

)]
+∑

i∈B

[(
ci,t

Ct

)
cov
(

ci,t+1

ci,t
,Re

t+1

)]
, t = 1.

(14)

The first term of the right-hand side of Equation (14) is negative, and the second term is pos-

itive. If the first term largely cancels out the second one, the covariance between per capita

consumption growth and the risky return rate can be close to zero. Therefore, consumption

aggregation is one fundamental problem that is responsible for various consumption-based

asset pricing puzzles.

Using disaggregated consumption data but applying concave utility instead of S-shaped

utility also leads to asset pricing puzzles. Let us take the equity premium puzzle as an
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example. The equity premium generated from the model is

E
(

Re
2−R f

1

)
=−R f

1cov

(
β

U
′
i2(ci2)

U ′
i1(ci1)

,Re
2

)
, ∀i, (15)

or

E
(

Re
2−R f

1

)
=−R f

1cov

(
1
N

N

∑
i=1

β
U
′
i2(ci2)

U ′
i1(ci1)

,Re
2

)
. (16)

The equity premium is positive because U
′
i2(ci2) and Re

2 are negatively correlated for all

i ∈ {1, . . . ,N}. Suppose that we model all the individuals using concave utility functions

instead of the S-shaped utility functions. Then the covariance between U
′
i2(ci2) and Re

2

becomes positive for all i ∈ A, and hence the right-hand side of Equation (15) is negative

for these individuals. If we use Equation (16) to evaluate the model performance, the total

equity premium generated by this model can be close to zero when the weighted sum of

the negative risk premiums corresponding to the individuals in set A largely cancels out the

weighted sum of the positive risk premiums associated with the individuals in set B.

In this simple two-state model, both risk averters and risk seekers demand a positive

risk premium. Notice that an individual behaves as a risk seeker (resp. risk averter) when

her consumption growth correlates negatively (resp. positively) with the risky return. For

example, in Figure 1, the individual whose state-contingent plan is (A|Re
2 = Re

2;E|Re
2 = R̄e

2)

or (B|Re
2 = Re

2;E|Re
2 = R̄e

2) is a risk averter, whereas the individual with the plan (A|Re
2 =

Re
2;F |Re

2 = R̄e
2) or (B|Re

2 = Re
2;F |Re

2 = R̄e
2) is a risk seeker. It is easy to understand that

a risk averter demands a positive risk premium. As the consumption growth of a risk

averter correlates positively with the risky return, holding the risky asset would increase her

consumption risks. However, for a risk seeker, the risky asset serves as insurance and plays

a role of consumption smoothing because her consumption growth is negatively correlated

with the risky return. As a result, risk-seeking individuals who prefer consumption risks to

consumption certainty would also demand a positive risk premium of the insurance.

Besides, using concave utility instead of S-shaped utility accounts for the rejection of

Hansen-Jagannathan inequality (1991). Hansen and Jagannathan (1991) give the following
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inequality √
var [SDFt+1]≥ E

(
1

R f
t

)
E(Re

t+1−R f
t )√

var(Re
t+1−R f

t )
, (17)

where SDFt+1 is the stochastic discount factor. Because the stochastic discount factor of a

traditional C-CAPM generally has low volatility, this inequality is typically rejected. We

decompose the stochastic discount factor SDF = 1
N ∑

N
i=1 β

U
′
i2(ci2)

U ′i1(ci1)
into two parts:

SDF =
1
N ∑

i∈A
β

U
′
i2(ci2)

U ′
i1(ci1)

+
1
N ∑

i∈B
β

U
′
i2(ci2)

U ′
i1(ci1)

. (18)

Let SDFA and SDFB respectively denote the first and second terms in the right-hand side of

equation (18). The variance of SDF can be written as

var(SDF) = var(SDFA)+ var(SDFB)+2cov(SDFA,SDFB).

In our model, cov(SDFA,SDFB) is positive because the marginal utility U
′
i2(ci2) is small

(resp. large) at a good (resp. bad) state irrespective of whether individual i belongs to set

A or set B. If we substitute the S-shaped utility functions with concave utility functions,

then cov(SDFA,SDFB) becomes negative. Actually, under the new utility functions, for all

i ∈ A, the marginal utility U
′
i2(ci2) at a good state becomes greater than that at a bad state.

Apparently, the adoption of a globally concave utility function may lead to a small variance

in the SDF.

4 Empirical evidence from micro consumption

This section presents empirical evidence from micro consumption data supporting the asset

pricing model based on S-shaped consumption utility.
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4.1 Testable prediction and identification

The S-shaped consumption utility predicts that some individuals’ consumption growth cor-

relates negatively with asset returns. The two-state model in Section 3 has shown that the

risky return rate correlates negatively with risk seekers’ consumption growth. Also, based

on the opposite consumption responses among different individuals in this model, we infer

that the risk-free rate in the real world is also negatively correlated with some individuals’

consumption growth rates. Finding negative correlations would provide strong evidence

supporting the S-shaped utility functions. At the least, we can use the evidence to argue

that the consumption utility can not be globally concave-shaped. Otherwise, some demand

a positive risk premium, but others command a negative one of the same risky return. The

law of one price does not hold.3

However, identifying the partially negative correlation between consumption growth

and asset returns faces serious challenges. First, we need to differentiate the individuals

whose consumption growth is negatively correlated with asset returns from others for whom

the correlation is positive. Second, even for one single individual, there are times when

her consumption growth correlates negatively with asset returns and the times when the

correlation is positive. It seems impractical to precisely differentiate the individuals and

the timing. We need to propose an innovative approach to establish the existence of the

partial negative correlation.

Our identification of the partial negative correlation relies on the heterogeneity of the

consumption behavior at different consumption levels. To facilitate discussion, we classify

the above consumption adjustments in Figure 1 into three categories: local moves, cycli-

3We can make this argument based on the identify

Et [mt+1Re
t+1] ≡ Etmt+1EtRe

t+1 + covt(mt+1,Re
t+1)

=
1

R f
t

EtRe
t+1 + covt(mt+1,Re

t+1),

where mt+1 is the pricing kernel, and Re
t+1 and R f

f are the equity return rate and the risk-free return rate,
respectively. When covt(mt+1,Re

t+1) differs between two types of individuals, the prices (Et [mt+1Re
t+1]) are

different too.
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cal jumps, and counter-cyclical jumps. The local moves refer to consumption adjustments

within either the convex or concave section of the utility curve. As the concave section of

the S-shaped utility function generally corresponds to high consumption level above a ref-

erence point, we refer to a point in this section as a high-consumption state. Similarly, we

refer to a point in the convex section of the utility function as a low-consumption state. The

local moves in the example (see the graph for period 2 in Figure 1) include the following

changes: A to E, B to F, E to A, and F to B. The jumps refer to a large change of consump-

tion from a high-consumption state to a low-consumption state or vice versa. If the jumps

are positively related to the risky return rate, we say that they are cyclical jumps (e.g., B

to E, and E to B). Otherwise, we call them counter-cyclical jumps (e.g., A to F, and F to

A). We notice that consumption in low-consumption states is more likely to be negatively

correlated with risky returns than consumption in high-consumption states. The reasons

are two-fold. First and most importantly, local moves in low-consumption states correlate

negatively with the risky returns, and the correlations in high consumption states are pos-

itive. Second, the counter-cyclical jumps (see the change from A to F or F to A in Figure

1) seem linked more to the low-consumption states than to the high-consumption states.

It is worth mentioning that cyclical jumps may prevent us from observing the correlation

differentiation between the low- and high-consumption states.

The above conclusion also applies to different consumption-growth states. Whether

the reference point is different from the lagged consumption or not, a high (resp. low)

consumption level more (resp. less) likely corresponds to a high (resp. low) consumption-

growth rate. Therefore, we conjecture that consumption in low consumption-growth states

more likely correlates negatively with risky returns than consumption in high consumption-

growth states.

4.2 The econometric model

We perform a standard quantile regression analysis (Koenker and Bassett, 1978) to examine

the correlations between asset return rates and different quantiles of consumption growth.
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The quantiles correspond to the consumption-growth states discussed above. Hereafter,

we use “consumption-growth quantiles” and “consumption-growth states” interchangeably.

We adopt a quantile regression model of the following form:

log
(

ci,t+1

ci,t

)
= δ0,τ + rt+1δ1,τ +ui,t+1, (τ ∈ (0,1); i = 1, . . . ,Nt ; t = 1, . . . ,T ), (19)

where rt+1 is the logarithm of the real asset return rate (i.e., equity return rate Re
t+1 or

risk-free return rate R f
t ); ui,t+1 is an idiosyncratic error term; and Nt is the number of obser-

vations in period t. Two parameters, δ0,τ and δ1,τ, are the intercept and the slope coefficient,

respectively. We adopt the standard identification assumption that the τth quantile of the

residual ui,t+1 conditional on rt+1 is 0. To evaluate how asset returns vary with a wide

range of consumption-growth states, we set τ = 0.05 j for j = 1,2, . . . ,19.

The slope coefficient, δ1,τ, links closely to the correlation between the τth quantile of

consumption growth rate and asset returns. Denote by Qτ
t+1 the τth quantile of consumption

growth rate, log
(

ci,t+1
ci,t

)
, between periods t and t +1. Ju and Li (2021) show that the ordi-

nary least squares estimator δ̂
OLS
1,τ of δ1,τ in the following macroeconomic mean-regression

model

Qτ
t+1 = δ0,τ + rt+1δ1,τ +ut+1, (τ ∈ (0,1); t = 1, . . . ,T ), (20)

is asymptotically equivalent to the standard quantile regression estimator of δ1,τ in model

(19). Let στ and σr be the standard deviations of Qτ
t+1 and rt+1, respectively. It is easy

to see that δ̂
OLS
1,τ consistently estimates στ

σr
corr(Qτ

t+1,rt+1), where corr denotes the correla-

tion. Therefore, the quantile regression coefficient, δ1,τ, is proportional to the correlation

between the τth quantile of the consumption growth rate and asset returns. Throughout the

paper, we interpret the slope coefficient, δ1,τ, as a correlation.

In this paper, the merit of the quantile regression is to help us explore the existence

of some individuals whose consumption growth correlates negatively with asset returns.

Model (19), essentially a macro model, presents only cross-state (i.e., cross-quantile) het-

erogeneity in consumption behaviors. As suggested by Ju and Li (2021), the interpretation
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of the regression coefficient, δ1,τ, needs to take into account the cross-individual hetero-

geneity, because the time-series evolution of the τth quantile of consumption growth over

time is an outcome of heterogeneous changes of numerous individual consumption growth

rates. In fact, the correlation between the τth quantile of consumption growth and asset

returns differs significantly from the correlation between individual consumption growth

rate and asset returns. We now clarify this point. Suppose that the status quo τth quan-

tile of log
(

ci,t+1
ci,t

)
is Qτ

t+1. When the ex-ante state switches and asset returns rise, some

individuals may increase their consumption while others reduce theirs. As the number of

individuals whose consumption growth rates increase from a value below Qτ
t+1 to a value

above Qτ
t+1 is smaller than the number of individuals whose growth rates decrease from a

value above Qτ
t+1 to a value below Qτ

t+1, the τth quantile of the new distribution for this pe-

riod lies below Qτ
t+1. Thus, Qτ

t+1 decreases. Therefore, if the estimated δ1,τ is significantly

negative for some τ∈ (0,1), it is evidence that some individuals’ consumption growth rates

are negatively correlated with asset returns.

It is possible that the estimated δ1,τ is positive for all τ ∈ (0,1). In this case, the number

of individuals whose consumption growth is positively correlated with asset returns dom-

inates that of individuals for whom the correlation is negative. However, we may find a

negative correlation in some subgroups if this domination does not hold in these subsam-

ples.

4.3 Data

The micro consumption data we use comes from the Consumption Expenditure Survey

(CEX) conducted by the U.S. Bureau of Labor Statistics (BLS). We strictly follow the pro-

cedure of Ju and Li (2021) to process the consumption data. We aggregate hundreds of

items of consumption expenditures into four classes: nondurable goods and services (NS);

education and health expenditures (EH); durable goods (D); and other expenditures (O).

According to different combinations of these classes, we define the following three types

of consumption expenditure measures. Type I is the total household consumption expen-
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diture. Type II includes only nondurable goods and services, a commonly used measure

in many consumption-based models. Type III consists of what we call infrequent large-

scale expenditures, including durable goods, education and health expenditures, and other

expenditures. In formula, we have

• Type I = NS + EH + D + O,

• Type II = NS,

• Type III = D + EH + O.

Large-scale expenditures are generally not regarded as consumption. However, they are

closely related to consumption and the change in consumption flow.

The primary data we use in this study are quarterly consumption growth rates. The final

sample sizes of the five measures are 317,430 (Type I), 333,677 (Type II), 325,610 (Type

III). The sample period spans 1982:Q2-2012:Q3 (excluding 1985:Q4).

The micro consumption differs greatly from the per capita consumption. For example,

the volatility in micro consumption is much larger than that of per capita consumption. In

our samples, the standard deviations of quarterly growth rates of consumption defined in

Types I–III measures are 48.62%, 29.62%, 210.32%, respectively. In contrast, the standard

deviation of per capita consumption growth rates4 in 1982:Q2-2013:Q3 is merely 0.56%.

Moreover, the micro consumption is much more volatile than the quarterly stock return

rate. The standard deviation of the latter in the same period is only 6.47%.

Our measure of aggregate stock prices is the Standard & Poor’s 500 Index. We compute

quarterly dividends using Shiller’s data (Shiller, 2000) which is available on his website.

We calculate riskless return rates using the monthly return rates of 3-month Treasury bills.

In our sample periods, the geometric means of the real quarterly return rates of stocks

and Treasury bills are 2.03% and 0.35%, respectively. The annualized equity premium is

6.96%.
4The per capita consumption is calculated by dividing the deflated national expenditure of nondurable

goods and services (provided by the Bureau of Economic Analysis) by the Civilian Noninstitutional Popula-
tion (downloaded from the website of the Federal Reserve Bank of St. Louis).
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Table 1: Quantile regression (Model (19), Type-I consumption, whole sample)
rt+1 = log(Re

t+1) rt+1 = log(R f
t )

δ0,τ δ1,τ sign(δ1,τ) δ0,τ δ1,τ sign(δ1,τ)
τ = coef. s.e. coef. s.e. p-value coef. s.e. coef. s.e. p-value
0.05 -0.6502 0.0033 -0.0144 0.0402 0.3840 -0.6408 0.0030 -2.7584 0.3667 0.0000
0.10 -0.4276 0.0020 -0.0340 0.0185 0.0320 -0.4230 0.0019 -1.6978 0.1954 0.0000
0.15 -0.3159 0.0013 -0.0308 0.0147 0.0120 -0.3128 0.0012 -1.1508 0.1539 0.0000
0.20 -0.2423 0.0011 -0.0297 0.0121 0.0080 -0.2405 0.0010 -0.7738 0.1259 0.0000
0.25 -0.1846 0.0008 -0.0142 0.0105 0.0760 -0.1840 0.0008 -0.3106 0.1050 0.0040
0.30 -0.1377 0.0008 -0.0154 0.0091 0.0640 -0.1380 0.0008 0.0140 0.0872 0.4160
0.35 -0.0965 0.0008 -0.0033 0.0090 0.3720 -0.0974 0.0008 0.3587 0.0860 0.0000
0.40 -0.0599 0.0007 0.0031 0.0083 0.3320 -0.0617 0.0007 0.6358 0.0776 0.0000
0.45 -0.0259 0.0007 0.0084 0.0080 0.1680 -0.0282 0.0007 0.8625 0.0896 0.0000
0.50 0.0074 0.0006 0.0130 0.0080 0.0640 0.0047 0.0006 1.1453 0.0823 0.0000
0.55 0.0411 0.0007 0.0167 0.0079 0.0240 0.0376 0.0007 1.4000 0.0781 0.0000
0.60 0.0761 0.0007 0.0191 0.0082 0.0080 0.0716 0.0007 1.6759 0.0733 0.0000
0.65 0.1141 0.0007 0.0302 0.0086 0.0000 0.1085 0.0007 1.9946 0.0881 0.0000
0.70 0.1550 0.0008 0.0383 0.0097 0.0000 0.1490 0.0008 2.2503 0.1027 0.0000
0.75 0.2038 0.0010 0.0429 0.0110 0.0000 0.1967 0.0010 2.6864 0.1082 0.0000
0.80 0.2634 0.0011 0.0605 0.0131 0.0000 0.2545 0.0011 3.2231 0.1222 0.0000
0.85 0.3420 0.0014 0.0598 0.0137 0.0000 0.3300 0.0014 3.7836 0.1459 0.0000
0.90 0.4579 0.0019 0.0808 0.0220 0.0040 0.4439 0.0018 4.6289 0.2000 0.0000
0.95 0.6798 0.0033 0.0830 0.0333 0.0040 0.6613 0.0033 5.3289 0.3464 0.0000

4.4 Estimation results

Tables 1 – 4 present the estimation results of quantile regressions of different consumption

growth rates on asset return rates. In all these tables, we report not only the standard errors

of the estimates but also the p-values of testing the significance of their signs. All estimates,

standard errors, and p-values are computed based on bootstrapping using sampling with

replacement (replicated 250 times). We denote δ̂0,τ and δ̂1,τ as the estimates of δ0,τ and

δ1,τ, respectively. In all four tables, the estimates of the intercepts δ0,τ do not show anything

unusual. Each estimate δ̂0,τ is around the τth quantile of the corresponding distribution of

consumption growth rates. All our interesting findings are from the estimates of δ1,τ, which

we summarize as follows.

First, the estimation results show that the consumption growth (measures of Type I and

Type III) of many individuals in the whole population varies negatively with asset returns.

In Tables 1 and 2, we observe that many estimates of δ1,τ at low quantiles (τ < 0.5) are

negative and statistically significant at the 5% or 1% level (in a one-sided test context). All
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Table 2: Quantile regression (Model (19), Type-III consumption, whole sample)
rt+1 = log(Re

t+1) rt+1 = log(R f
t )

δ0,τ δ1,τ sign(δ1,τ) δ0,τ δ1,τ sign(δ1,τ)
τ = coef. s.e. coef. s.e. p-value coef. s.e. coef. s.e. p-value
0.05 -1.5879 0.0065 -0.1533 0.0885 0.0680 -1.5646 0.0073 -7.7096 0.8502 0.0000
0.10 -1.0540 0.0051 -0.1813 0.0581 0.0040 -1.0365 0.0046 -6.3820 0.5104 0.0000
0.15 -0.7421 0.0036 -0.1921 0.0402 0.0000 -0.7294 0.0033 -5.1713 0.3625 0.0000
0.20 -0.5431 0.0022 -0.1518 0.0278 0.0000 -0.5345 0.0023 -3.6276 0.3124 0.0000
0.25 -0.3955 0.0022 -0.0992 0.0262 0.0000 -0.3911 0.0021 -2.3725 0.2465 0.0000
0.30 -0.2839 0.0019 -0.0776 0.0242 0.0000 -0.2822 0.0019 -1.2809 0.2203 0.0000
0.35 -0.1931 0.0016 -0.0637 0.0180 0.0000 -0.1931 0.0016 -0.3659 0.1909 0.0200
0.40 -0.1174 0.0014 -0.0397 0.0162 0.0120 -0.1192 0.0014 0.4416 0.1527 0.0040
0.45 -0.0532 0.0013 -0.0156 0.0132 0.1240 -0.0559 0.0012 1.0455 0.1445 0.0000
0.50 -0.0019 0.0009 0.0072 0.0096 0.2520 -0.0042 0.0010 1.5567 0.1968 0.0000
0.55 0.0550 0.0012 0.0257 0.0156 0.0400 0.0490 0.0011 2.6907 0.1445 0.0000
0.60 0.1211 0.0014 0.0580 0.0149 0.0000 0.1125 0.0013 3.6835 0.1565 0.0000
0.65 0.1978 0.0016 0.0820 0.0200 0.0000 0.1862 0.0015 4.6456 0.1565 0.0000
0.70 0.2878 0.0019 0.1175 0.0195 0.0000 0.2728 0.0020 5.6922 0.2125 0.0000
0.75 0.4007 0.0020 0.1342 0.0248 0.0000 0.3826 0.0020 6.9683 0.2628 0.0000
0.80 0.5441 0.0027 0.1490 0.0281 0.0000 0.5195 0.0025 8.2343 0.3092 0.0000
0.85 0.7432 0.0038 0.1517 0.0426 0.0000 0.7142 0.0033 9.4509 0.4041 0.0000
0.90 1.0522 0.0042 0.1535 0.0510 0.0000 1.0149 0.0046 10.5050 0.5472 0.0000
0.95 1.5830 0.0059 0.1177 0.0728 0.0440 1.5482 0.0059 9.5332 0.7808 0.0000

Table 3: Quantile regression (Model (19), Type-II consumption, whole sample)
rt+1 = log(Re

t+1) rt+1 = log(R f
t )

δ0,τ δ1,τ sign(δ1,τ) δ0,τ δ1,τ sign(δ1,τ)
τ = coef. s.e. coef. s.e. p-value coef. s.e. coef. s.e. p-value
0.05 -0.4335 0.0013 0.0154 0.0153 0.1400 -0.4337 0.0013 0.1456 0.1490 0.1520
0.10 -0.3198 0.0011 0.0101 0.0113 0.2000 -0.3201 0.0010 0.1583 0.1131 0.0760
0.15 -0.2480 0.0008 0.0008 0.0090 0.4640 -0.2486 0.0008 0.1906 0.1117 0.0440
0.20 -0.1937 0.0007 -0.0067 0.0092 0.2440 -0.1945 0.0007 0.2214 0.0922 0.0000
0.25 -0.1506 0.0007 -0.0004 0.0082 0.4800 -0.1515 0.0007 0.3031 0.0895 0.0000
0.30 -0.1125 0.0007 0.0013 0.0080 0.4320 -0.1138 0.0007 0.4064 0.0780 0.0000
0.35 -0.0792 0.0006 -0.0037 0.0074 0.3160 -0.0807 0.0006 0.4712 0.0691 0.0000
0.40 -0.0477 0.0006 -0.0012 0.0069 0.4320 -0.0495 0.0006 0.6179 0.0688 0.0000
0.45 -0.0181 0.0006 0.0068 0.0061 0.1160 -0.0203 0.0006 0.7477 0.0728 0.0000
0.50 0.0107 0.0006 0.0091 0.0057 0.0520 0.0082 0.0006 0.8642 0.0720 0.0000
0.55 0.0401 0.0006 0.0145 0.0068 0.0160 0.0375 0.0006 0.9844 0.0701 0.0000
0.60 0.0705 0.0006 0.0182 0.0066 0.0000 0.0674 0.0006 1.1510 0.0690 0.0000
0.65 0.1026 0.0007 0.0234 0.0074 0.0000 0.0989 0.0007 1.3251 0.0727 0.0000
0.70 0.1379 0.0007 0.0195 0.0081 0.0120 0.1335 0.0007 1.5073 0.0718 0.0000
0.75 0.1776 0.0007 0.0238 0.0078 0.0000 0.1722 0.0006 1.7330 0.0818 0.0000
0.80 0.2241 0.0010 0.0286 0.0093 0.0000 0.2185 0.0009 1.9919 0.0946 0.0000
0.85 0.2818 0.0010 0.0267 0.0105 0.0000 0.2745 0.0009 2.3400 0.1014 0.0000
0.90 0.3583 0.0011 0.0387 0.0129 0.0000 0.3498 0.0010 2.7456 0.1290 0.0000
0.95 0.4827 0.0016 0.0345 0.0166 0.0200 0.4720 0.0015 3.1578 0.1740 0.0000
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Table 4: Quantile regression (Model (19), Type-II consumption, young households)
rt+1 = log(Re

t+1) rt+1 = log(R f
t )

δ0,τ δ1,τ sign(δ1,τ) δ0,τ δ1,τ sign(δ1,τ)
τ = coef. s.e. coef. s.e. p-value coef. s.e. coef. s.e. p-value
0.05 -0.4355 0.0035 -0.0622 0.0406 0.0720 -0.4337 0.0033 -0.9255 0.3707 0.0120
0.10 -0.3167 0.0028 -0.0287 0.0330 0.1840 -0.3138 0.0031 -0.7877 0.3258 0.0000
0.15 -0.2447 0.0024 -0.0623 0.0255 0.0120 -0.2422 0.0024 -0.8887 0.2721 0.0000
0.20 -0.1917 0.0020 -0.0495 0.0195 0.0000 -0.1893 0.0019 -0.8180 0.2348 0.0000
0.25 -0.1484 0.0017 -0.0414 0.0189 0.0120 -0.1474 0.0016 -0.6172 0.2070 0.0000
0.30 -0.1115 0.0016 -0.0440 0.0200 0.0160 -0.1117 0.0019 -0.2308 0.1721 0.0800
0.35 -0.0791 0.0014 -0.0407 0.0190 0.0000 -0.0795 0.0016 -0.1275 0.1797 0.2240
0.40 -0.0482 0.0016 -0.0416 0.0187 0.0160 -0.0490 0.0015 -0.0076 0.1680 0.4480
0.45 -0.0189 0.0015 -0.0229 0.0152 0.0600 -0.0202 0.0014 0.1799 0.1505 0.1160
0.50 0.0089 0.0013 -0.0127 0.0172 0.2240 0.0079 0.0013 0.2460 0.1531 0.0400
0.55 0.0371 0.0014 -0.0065 0.0149 0.3440 0.0355 0.0015 0.4188 0.1871 0.0120
0.60 0.0667 0.0017 0.0034 0.0173 0.4640 0.0646 0.0016 0.6290 0.1847 0.0000
0.65 0.0977 0.0016 0.0077 0.0187 0.3160 0.0947 0.0018 0.8936 0.1861 0.0000
0.70 0.1317 0.0017 0.0029 0.0188 0.4360 0.1283 0.0018 1.1170 0.1993 0.0000
0.75 0.1726 0.0020 0.0268 0.0257 0.1560 0.1681 0.0019 1.4500 0.2172 0.0000
0.80 0.2194 0.0021 0.0320 0.0265 0.1000 0.2144 0.0021 1.5102 0.2538 0.0000
0.85 0.2742 0.0023 0.0394 0.0254 0.0640 0.2678 0.0022 1.6690 0.2326 0.0000
0.90 0.3493 0.0026 0.0477 0.0321 0.0480 0.3430 0.0028 1.8079 0.3839 0.0000
0.95 0.4745 0.0037 0.0713 0.0397 0.0360 0.4682 0.0044 1.9738 0.5135 0.0000

estimates at top quantiles (τ > 0.5) (in Tables 1 and 2) are significantly positive. The cross-

quantile pattern of the estimates of δ1,τ indicates that the distribution of micro consumption

growth tends to “expand” when asset returns rise. We call this phenomenon “big bang,” a

term coined from Ju and Li (2021).

Second, for Type-II consumption, we find no direct evidence of the partial negative

correlation for the whole population but find direct evidence within a subgroup, i.e., young

households. In Table 3, we observe that the low-quantile estimates of δ1,τ in both the left

and the right panels are close to zero, indicating a low correlation between asset returns

and low quantiles of growth rates of nondurable goods and services. However, the top-

quantile estimates of δ1,τ are much larger. The failure of finding the direct evidence does

not mean there are no individuals whose Type-II consumption growth correlates negatively

with asset returns. We substantiate this conjecture with a subgroup analysis. Table 4 reports

the estimates of the quantile regression model (19) for young households (household heads

aged less than or equal to 30). We observe that the correlations between stock return (or

risk-free return) and many low quantiles of Type-II consumption growth rates of the young
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subgroup are significantly negative, which is strikingly different from the findings in the

whole sample (see Table 3).

Third, the quantile regression offers a finding that we call “accelerated expansion.” We

interpret the regression coefficient as the “velocity” at which the particular quantile moves

in response to a rise in asset returns. We observe that, in Tables 1, 2, and 4, the greater the

distance of a quantile from the “big bang center” where the velocity is zero, the faster it

moves away. After the structural estimation in section 5, we present an explanation for the

accelerated expansion.

We also find a partial negative correlation in stockholders’ Type-II consumption. Ap-

pendix A reports a salient big bang in Type-II consumption of some subgroups of stock-

holders. By dividing the stockholders or young stockholders into subgroups according

to one-period lagged consumption growth, we find that the low quantiles of Type-II con-

sumption growth rates of several subgroups vary negatively with stock returns or risk-free

returns. Refer to Tables A.1 and A.2.

4.5 Ju and Li’s (2021) evidence

Ju and Li (2021) find a partial negative correlation in some subgroups for which this paper

fails to present direct evidence. Ju and Li (2021) estimate the following quantile regression

model:

Qτ
t+1 = δ0,τ + rt+1δ1,τ +λ

′
τFt+1 +ut+1, (τ ∈ (0,1); t = 1, . . . ,T ), (21)

where Qτ
t+1 is defined the same as in (20) except that the consumption is of Type-II mea-

sure; rt+1 is the logarithm of the gross real interest rate which is known in period t; Ft+1

is a vector of common factors representing the state of the economy. Ju and Li (2021)

use the first seven principal components of hundreds of U.S. macroeconomic time se-

ries as the common factors. By computing the correlation, corr(λ
′
τ1

Ft+1,λ
′
τ2

Ft+1), they

show that, for many groups, the responses of the top quantiles (τ2 > 0.5) of consumption
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growth to changes in common factors are generally oppositive to those of the low quan-

tiles (τ1 < 0.5). These groups include the whole population, young households, prime-age

households (household heads aged more than 30 but less than or equal to 60), old house-

holds (household heads aged more than 60), and non-stockholders.

Ju and Li (2021) do not find a negative correlation, corr(λ
′
τ1

Ft+1,λ
′
τ2

Ft+1) (τ1 < 0.5 and

τ2 > 0.5) for stockholders. They argue that the wealth effects of changes in stock prices in-

duce stockholders more likely to have cyclical consumption jumps than non-stockholders;

therefore, it is much harder to detect the negative correlation in the sample of stockholders.

However, Ju and Li (2021) present some indirect evidence using a filtering method.

4.6 Robustness against measurement errors in consumption

It is well-known that survey data contains a large amount of noise. In linear mean regres-

sion, classic measurement errors in the dependent variable does not affect unbiasedness.

However, Hausman et al. (2019) and Ju and Li (2021) show that this type of error might

cause the linear quantile regression estimator of Koenker and Bassett (1978) to be biased.

In Web Appendix B, we propose a conditional deconvolution method to deal with the

measurement errors in consumption. Overall, we find that the phenomena of the big bang

and accelerated expansion are quite robust against measurement errors. All of the qualita-

tive conclusions remain unchanged.

5 A structural model estimation

With an estimable structural asset pricing model based on micro consumption and reference-

dependent preference, this section shows that an S-shaped consumption utility can quanti-

tatively solve the equity premium puzzle.
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5.1 The structural model

5.1.1 The consumer’s optimization problem

Consider an economy in which there are N consumers indexed by i = 1, . . . ,N. The ith

consumer maximizes her lifetime utility

E

[
∞

∑
τ=0

δ
τUi,t+τ|Iit

]
, (22)

where Ui,t+τ is her intraperiod consumption utility, Iit is her information set at time t, and

δ measures the subjective time discount factor. We specify Ui,t+τ as a reference-dependent

utility function

Ui,t+τ = µ
(

ln(
ci,t+τ

θi,t+τ

)

)
, (23)

where µ is a gain-loss utility function, ci,t+τ denotes the consumption expenditure on non-

durable goods and services, and θi,t+τ represents the reference point, which is individual

specific and time-varying. The argument of the gain-loss function is the consumption-

reference ratio (in logarithm). Individuals perceive the ratios as gains if they are greater

than or equal to zero and losses otherwise. For ease of exhibition, decompose µ(·) into

three parts:

µ
(

ln(
ci,t+τ

θi,t+τ

)

)
=


µg

(
ln( ci,t+τ

θi,t+τ
)
)
, if ci,t+τ > θi,t+τ;

0, if ci,t+τ = θi,t+τ;

µl

(
ln( ci,t+τ

θi,t+τ
)
)
, if ci,t+τ < θi,t+τ,

(24)

where µg(·) and µl(·) denote the utility functions for the gains and losses, respectively.

Following Kahneman and Tversky (1979), we impose the following restrictions on the

gain-loss function µ(·): (i) µg(0) = µl(0) = 0, (ii) µ
′
g(z)≥ 0 for all z > 0, (iii) µ

′
l(z)≥ 0 for

all z < 0, (iv) µ
′′
g(z)≤ 0 for all z > 0, (v) µ

′′
l (z)≥ 0 for all z < 0. Condition (i) is a standard

normalization. Conditions (ii) and (iii) restrict µ(·) to be monotonically increasing. The

last two conditions guarantee that µ(·) is an S-shaped consumption utility function; that
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is, µ(ci,t+τ) is concave if ci,t+τ > θi,t+τ and convex if ci,t+τ < θi,t+τ. We assume that the

reference point θi,t+τ is exogenous and specify it later in Section 5.1.2.5

There are K+1 tradable financial assets in the economy indexed by k = 0,1, . . . ,K. The

0th asset denotes a risk-free security, and the remaining ones are risky assets. We represent

the return rate of the kth asset in period t as Rk,t(k = 0, . . . ,K). We specify the ith consumer’s

intertemporal budget constraint as

cit +
K

∑
k=0

aik,t =
K

∑
k=0

aik,t−1Rk,t +Yit , (25)

where aik,t is her investment in security k in period t, and Yit is her labor income.

As the intertemporal preference is time separable, the shadow price of wealth, λit , for

the ith consumer in period t is the marginal utility of consumption within the period; that

is,

λit = µ
′
(

ln(
ci,t

θi,t
)

)
1
cit

. (26)

Note that the marginal utility at the reference points may not be well defined. Throughout

the paper, we assume zero probability that consumption choices fall on the reference points.

Given the shadow price formula, the SDF or pricing kernel for the ith consumer is

Mi,t+1 = δ
λi,t+1

λit
=

µ
′
(ln( ci,t+1

θi,t+1
))ci,t

µ′(ln(ci,t
θit
))ci,t+1

. (27)

The first-order conditions for this individual’s optimization imply the Euler equation:

E
[
Mi,t+1Rk,t+1|Iit

]
= 1, (28)

for all assets k = 0,1, . . . ,K.

5Unlike Kahneman and Tversky (1979), we do not restrict the consumers to be loss averse. Loss aversion
implies that individuals are more sensitive to losses than to the same amount of gains. Benartzi and Thaler
(1995) and Barberis, Huang, and Santos (2001) show that loss aversion has significant ramifications for asset
pricing. In our model, whether individuals are loss averse or not is determined by a data-driven approach.
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5.1.2 Specification of reference points

While the reference points are central in prospect theory, Kahneman and Tversky (1979)

offer relatively little guidance on how they are determined. Barberis (2013) points out that

the lack of a general rule for choosing reference points prevents researchers from develop-

ing applications of prospect theory.

We specify the reference point as a distribution closely related to the lagged consump-

tion

θit = ci,t−1θ
t
i,

where θ
t
i is a stationary random variable. In our data set, not many individuals report more

than three periods of consumption expenditures. Therefore, we further restrict that

θit = ci,t−1θ
1
i , θi,t+1 = ci,tθ

2
i . (29)

Denote git =
ci,t+1

cit
as the ith consumer’s growth rate of consumption from t to t+1. Assume

that the two latent reference points given the observed consumption growth rates, git and

gi,t+1, follow a joint log-normal distribution:

 ln(θ1
i )

ln(θ2
i )

∣∣∣∣∣∣(gi,t ,gi,t+1)

∼ N

 r1(git ,gi,t+1)

r2(git ,gi,t+1)

 ,

 σ2
r ρσ2

r

ρσ2
r σ2

r

 , (30)

where r j(git ,gi,t+1), j = 1,2 denote the conditional means, and σ2
r and ρ denote the variance

and the correlation, respectively.6 We specify r j(git ,gi,t+1) as a translog function:

r j(git ,gi,t+1) = r j
1 log(git)+ r j

2 log(gi,t+1), j = 1,2. (31)

6Note that we implicitly assume that the reference points are conditionally independent of
(R0,t+1, . . . ,RK,t+1). Therefore, the pricing kernel of our model contains no information about prices. In
the existing literature, this information improves model performance in explaining the cross-section stock
returns (e.g., Fama and French, 1993, 2015; Bansal, Dittmar, Lundblad, 2005). However, the inclusion of
price information in the pricing kernel makes the model not purely consumption-based, distorting our under-
standing of individuals’ preferences toward consumption risks.
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5.1.3 The aggregate pricing kernel

Given the above specifications of reference points, the pricing kernel in Equation (28)

becomes

Mi,t+1 ≡M(θ1
i ,θ

2
i ,git ,gi,t+1) = δ

µ
′
(ln(gi,t+1

θ
2
i
))g−1

i,t+1

µ′(ln(gi,t

θ
1
i
))

. (32)

Let It be the set of common information; that is, It =
⋂N

i=1 Iit . Using the tower property of

conditional expectation, we rewrite the asset pricing equations (28) as

E
[
M(θ1

i ,θ
2
i ,git ,gi,t+1)Rk,t+1|It ,git

]
= 1, k = 0,1, . . . ,K. (33)

Let Θ represent all parameters in our model. Define a conditional expectation m(git ,gi,t+1,Θ)

as follows:

m(git ,gi,t+1,Θ) = E
[

M(θ1
i ,θ

2
i ,git ,gi,t+1)

∣∣(git ,gi,t+1, It ,R0,t+1, . . . ,RK,t+1)
]
. (34)

As the specification (30) indicates that the reference points are conditionally independent

of (It ,R0,t+1, . . . ,RK,t+1), we therefore compute the integral in (34) by

m(git ,gi,t+1,Θ) =
∫∫

M(θ1
i ,θ

2
i ,git ,gi,t+1) f (θ1

i ,θ
2
i |(git ,gi,t+1))dθ

1
i dθ

2
i , (35)

where f denotes the conditional density function. Combining Equations (33) and (34) and

applying the tower property of conditional expectation twice, we have

E
[
m(git ,gi,t+1,Θ)Rk,t+1|It

]
= 1, k = 0,1, . . . ,K. (36)

To alleviate the issue of measurement errors in consumption data, we take an average of

(36) across all individuals, obtaining the aggregate pricing kernel

m̄t+1(Θ) =
1
N

N

∑
i=1

m(git ,gi,t+1,Θ), (37)
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which satisfies the following asset pricing equation:

E
[

m̄t+1(Θ)Rk,t+1
∣∣ It]= 1, k = 0,1, . . . ,K. (38)

5.1.4 Specification of the gain-loss utility function

We specify the utility functions for the gains and losses respectively as

µg(z) =
n

∑
ν=0

β
g
νb[0,z̄]ν,n (z) (39)

and

µl(z) =
n

∑
ν=0

β
l
νb[ z,0]

ν,n (z), (40)

where β
g
ν and β

l
ν are coefficients, [ z, z̄] is the domain of the gain-loss utility function µ, and

b[a,b]ν,n (z) =
1

(b−a)n

(
n
ν

)
(z−a)ν(b− z)n−ν, ν = 0, . . . ,n, (41)

are Bernstein basis polynomials. To have an S-shaped gain-loss utility, we impose the

restrictions on the coefficients as follows: (I) β
g
0 = β

l
n = 0, (II) β

g
ν ≤ β

g
ν+1,ν = 0, . . . ,n−1,

(III) β
l
ν ≤ β

l
ν+1,ν = 0, . . . ,n−1, (IV) β

g
ν+2−2β

g
ν+1 +β

g
ν ≤ 0,ν = 0, . . . ,n−2, (V) β

l
ν+2−

2β
l
ν+1 + β

l
ν ≥ 0,ν = 0, . . . ,n− 2.7 Conditions (I)–(V) are sufficient for (i)–(v) in section

5.1.1 to hold. Notice that all Bernstein coefficients are identifiable only up to a multiplier;

we therefore impose a normalization condition: β
g
1 = 1.

7The first-order derivative of a Bernstein polynomial of degree n Bn(z) = ∑
n
ν=0 βνb[a,b]ν,n (z) is

B
′
n(z) = n∑

n−1
ν=0(βν+1− βν)b

[a,b]
ν,n−1(z). Its second-order derivative is B

′′
n(z) = n(n− 1)∑

n−2
ν=0(βν+2− 2βν+1 +

βν)b
[a,b]
ν,n−2(z). Restricting the coefficients in the first-order and second-order derivatives according to condi-

tions (II)-(V) guarantees that the gain-loss utility function is monotonically increasing and S-shaped.
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5.2 Econometric estimation and nonregularity

From (38), we have

E [m̄t+1(Θ)R0,t+1] = 1 (42)

and

E
[
m̄t+1(Θ)(Rk,t+1−R0,t+1)

]
= 0, k = 1, . . . ,K. (43)

We can identify the preference parameters from the unconditional moment conditions (42)

and (43) when the number of test assets, K + 1, is no less than the number of parameters.

Denote Rt+1 = (R0,t+1,R1,t+1− R0,t+1, . . . ,RK,t+1− R0,t+1)
′ as the payoff vector of the

portfolios with a price vector p = (1,0, . . . ,0)′. The vector of pricing errors is

ΦT (Θ) =
1
T

T

∑
t=1

[m̄t+1(Θ)Rt+1− p] . (44)

We minimize the distance

d(Θ) =
√

Φ
′
T (Θ)WKΦT (Θ), (45)

where the weight matrix is

WK =

 K 0

0 IK

 .

In the following, we call d(Θ) the WK distance. The designed block-diagonal weight

matrix WK assigns equal weights to the squared pricing error of the risk-free return and the

(cross-portfolio) average squared pricing error of excess returns.

It is worth mentioning that it is difficult to carry out statistical inference. The econo-

metric model is nonregular as we allow the reference point to be a kink point of the utility

curve. Given an arbitrarily small change in, say, σ2
r , there is a nonzero mass of individuals

whose marginal utility jumps. Thus, the pricing kernels of these individuals, and hence the

aggregate pricing kernel, are not differentiable with respect to σ2
r . As a consequence, the
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WK distance d(Θ) is generally nondifferentiable. It is thus infeasible to derive the limiting

distribution of Θ̂ by following traditional methods of moments.

5.3 Estimation and results

5.3.1 Estimation

Several preparations are needed to implement the estimation. First, a full specification of

the gain-loss utility function is required. In our dataset, the standard deviation of consump-

tion growth (in logarithm) is 0.2874, and the minimum and maximum values are -0.9470

and 0.9974, respectively. However, the consumption-reference ratios (in logarithms) may

go beyond the range [−0.9479,0.9974]. For this reason, we specify the domains of the gain

function µg(z) and the loss function µl(z) as [0,1.5] and [−1.5,0], respectively. Thus, the

domain of µ is over ten times as wide as the standard deviation of consumption growth.

In addition, to have flexible specifications of µg(z) and µl(z), we fix the order of the two

Bernstein polynomials to eight. Second, we impose several meaningful restrictions on the

estimate parameters. For example, we restrict the subjective time discount factor δ to the

range [0.9000,0.9999], the conditional variance of reference points σ2
r to the range (0,∞),

and the correlation ρ to the range (−1,1). Third, we choose Fama and French’s 100 port-

folios sorted by size and book-to-market ratio as test assets. Among them, four portfolios

encounter the problem of missing data and are dropped. In addition, we add the three-

month Treasury bill as a test asset. Therefore, the number of moment conditions in the

estimation is 97. Fourth, we choose stockholders’ nondurable goods and services as the

measure of consumption.

We compute the double integral in Equation (35) using a simulated method. Given the

specifications in (30) and (31), it is easy to draw observations randomly from the condition-

al distribution of the reference points. Suppose we repeat drawing R times. Let (θ1
i,r,θ

2
i,r)
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denote the rth repetition. According to the law of large numbers, the simulated average

1
R

R

∑
r=1

M(θ1
i,r,θ

2
i,r,git ,gi,t+1) (46)

is a consistent estimator of m(git ,gi,t+1,Θ). Therefore, we can compute the complicated

double integral in Equation (35) using the simple simulated average.8

5.3.2 Model performance

With estimated preference parameters, we can define the fitted expected return rates and

fitted risk premiums. Denote Θ̂ the estimate of Θ. Then, m̄t+1(Θ̂) is the estimated aggregate

pricing kernel. From the identities

cov[m̄t+1(Θ̂),Rk,t+1] = E[m̄t+1(Θ̂)Rk,t+1]−E[m̄t+1(Θ̂)]ERk,t+1, k = 0,1, . . . ,K,

we have the formula of expected returns:

ERk,t+1 =
E[m̄t+1(Θ̂)Rk,t+1]− cov[m̄t+1(Θ̂),Rk,t+1]

E[m̄t+1(Θ̂)]
, k = 0,1, . . . ,K.

We define the fitted expected returns as

ˆ̄Rk,t+1 =
1− ĉov[m̄t+1(Θ̂),Rk,t+1]

Ê[m̄t+1(Θ̂)]
, k = 0,1, . . . ,K, (47)

where Ê and ĉov indicate the sample mean and sample covariance, respectively. If m̄t+1(Θ̂)

prices the kth asset correctly—that is, E[m̄t+1(Θ̂)Rk,t+1] = 1—then the fitted expected re-

turn ˆ̄Rk,t+1 is asymptotically equal to the expected return ERk,t+1. Otherwise, there is a

difference between ˆ̄Rk,t+1 and ERk,t+1. Similarly, we define the fitted market risk premium

8As the number of individuals in our sample is considerably large (27,914), we set R to 100. In ad-
dition, minimizing the WK distance d(Θ) defined in (45) requires a multi-start or global algorithm. Local
optimization typically converges very slowly, presumably because the objective function d(Θ) is not differen-
tiable with respect to certain parameters. We run MATLAB’s global optimization procedure (Matlab 2020b)
multiple times with different starting solutions.
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as
−ĉov[m̄t+1(Θ̂),Rt+1−R0,t+1]

Ê[m̄t+1(Θ̂)]
, (48)

where Rt+1 is the market equity return. If m̄t+1(Θ̂) prices the market excess return Rt+1−

R0,t+1 correctly—that is, E[m̄t+1(Θ̂)(Rt+1−R0,t+1)] = 0—then the fitted market risk pre-

mium is asymptotically equal to the genuine market risk premium E(Rt+1−R0,t+1).

Figure 2 plots the fitted expected returns against the mean realized returns. All of the

circles in the figure denote Fama and French’s 96 portfolios sorted by size and book-to-

market ratio. Two solid black points represent the risk-free return and stock market return,

respectively. If the model fits the data perfectly, all of the points and circles in the figure

will lie along the 45-degree line.

Figure 2: Realized vs. Fitted Returns

The model has some explanatory power on the cross-section expected stock returns.

Its performance is comparable to that of CAPM as the computed WK distance is 0.1003

while the distance estimated for CAPM is 0.1009. However, this model fits the data less

well compared with the Fama and French’s three-factor model because the latter achieves

a much smaller WK distance (0.0712). More work is needed to study the cross-section
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performance of an asset pricing model based on S-shaped consumption utility. As this is

not the focus of this paper, we leave it for the future.

The risk-free return fits pretty well, falling nearly on the 45-degree line. The estimated

expected return rate is 0.3106% per quarter, close to the average realized risk-free return

rate, 0.32%. The high fitting accuracy is partly attributed to our estimation design in which

the WK distance assigns tremendous weight to the pricing error of the risk-free return. Our

model predicts low interest rates because many individuals save. In contrast, in traditional

models, every individual wants to borrow, and the interest rates must be high enough to

clear the market.

The most significant finding concerns the fitted stock market return. It is near the 45-

degree line. The estimated expected stock market return is 2.0625%, close to the average

realized stock market return rate of 2.2283% per quarter. The fitted market risk premium

computed using the formula (48) is 1.7518% per quarter, which is very close to the realized

market risk premium of 1.9083%. Therefore, the proportion of the risk premium that the

model accounts for is 91.80%.

Moreover, the estimated volatility of the stochastic discount factor is high. From E-

quation (38), it is easy to derive Hansen and Jagannathan’s (1991) inequality for each test

portfolio:

√
var
[
m̄t+1(Θ̂)

]
≥ E

[
m̄t+1(Θ̂)

] E(Rk,t+1−R0,t+1)√
var(Rk,t+1−R0,t+1)

, k = 1, . . . ,K.

These inequalities associate the lower bound of the standard deviation of the SDF with the

maximum Sharpe ratio of all test portfolios. In our computation, the maximum Sharpe

ratio is 0.3515, and the estimated mean and standard deviations of m̄t+1(Θ̂) are 0.9978

and 0.7903, respectively. Thus, the volatility of m̄t+1(Θ̂) is sufficiently large to make all

inequalities hold.
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5.3.3 Estimated preference

Table 5 presents the estimated preference parameters. We classify the parameters into four

groups: (1) time discount factor, (2) distribution parameters of reference points, (3) Bern-

stein coefficients of the gain function µg, and (4) Bernstein coefficients of the loss function

µg. The estimated subjective time discount factor is 0.9954, which is quite reasonable for

quarterly data. The estimated standard deviation (σr) of the reference points conditional on

observed consumption growth is 0.3044. The number is larger than the standard deviation

of individual consumption growth (0.2874, in logarithm). The conditional correlation of

the reference points between two adjacent periods ρ is close to zero (-0.0056), suggesting

that individuals’ reference points are not persistent. The estimates of σr and ρ indicate that

reference points may be immensely different across individuals and tremendously volatile

over time. The estimated values of r1
1, r1

2, r2
1, and r2

2 are generally not equal to zero, showing

some dependence between the unobserved reference points and the observed consumption

decisions.

Figure 3 shows the graph of the gain-loss utility function, which comprises two Bern-

stein polynomials with the coefficients listed in Table 5. The concavity for the gain function

and the convexity for the loss function are both clearly visible. Further, it is easy to see that

the reference point is a concave kink, implying that individuals are loss averse around the

reference point.

To quantitatively characterize the estimated preference, we define the degree of rela-

tive risk aversion. Since the gain-loss utility function is flexibly specified, the degree of

relative risk aversion is meaningful only locally, varying across the consumption-reference

ratio. Let c and θ denote the consumption and reference levels, respectively. As the utility

function is U(c,θ) = µ
(
ln( c

θ
)
)

and the reference point θ is exogenous, the formula of the

degree of relative risk aversion is

γ

(
ln(

c
θ
)
)
≡−U

′′
c (c,θ)c

U ′
c(c,θ)

= 1−
µ
′′
(ln( c

θ
))

µ′(ln( c
θ
))
,
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where the constant one is associated with the log transformation of the consumption-

reference ratio. If µ
′′
(ln( c

θ
))< µ

′
(ln( c

θ
)), the individual is locally risk averse; if µ

′′
(ln( c

θ
))>

µ
′
(ln( c

θ
)), the degree of relative risk aversion is negative (locally risk seeking). We numer-

ically compute the degree of relative risk aversion for each consumption-reference ratio.

Table 5: ESTIMATED PREFERENCE PARAMETERS

Distribution Parameters of Reference Points Time Discount Factor

σ2
r r1

1 r1
2 r2

1 r2
2 ρ δ

0.0927 -0.1755 -0.0465 -0.1017 0.1975 -0.0056 0.9954

Bernstein Coefficients of the Gain Function µg(z)

β
g
0 β

g
1 β

g
2 β

g
3 β

g
4 β

g
5 β

g
6 β

g
7 β

g
8

0.0000 1.0000 1.9574 2.8629 3.7065 4.4703 5.1341 5.6709 5.9677

Bernstein Coefficients of the Loss Function µl (z)

β
l
0 β

l
1 β

l
2 β

l
3 β

l
4 β

l
5 β

l
6 β

l
7 β

l
8

-5.3845 -5.2431 -4.9088 -4.4836 -3.9537 -3.3072 -2.5240 -1.4867 0.0000

Notes. This table presents the estimates of preference parameters when the gain-loss utility function µ is

restricted to be S-shaped. That is, the gain utility function µg is concave, and the loss utility function µl is

convex. The estimates are obtained by minimizing the WK distance d(Θ) defined in (45). The distribution

parameters of reference points are specified in Equations (30) and (31). Refer to Equations (39) and (40)

for the Bernstein polynomials of µg and µl , respectively. Because of the non-differentiability problem (see

Section 5.2), we do not report the standard errors of the estimates.

Figure 4 shows the graph of the degrees of relative risk aversion. Consistent with

the prediction of Kahneman and Tversky’s (1979) prospect theory, individuals are risk

averse toward consumption gains and risk seeking toward consumption losses. If the

consumption-reference ratio (in logarithm) is greater than zero, the degree of relative risk

aversion is in the interval [1.2984,6.6266]. If this ratio is less than zero, the degree of

relative risk aversion belongs to the range [−8.4680,−0.5590]. However, it is less likely

that an average individual makes a consumption decision near the extreme values of the
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Figure 3: Estimated S-Shaped Gain-Loss Utility Function µ(z)

consumption-reference ratio. A simple computation shows that

P
[
ln
( c

θ

)
> 1.2

]
= P

[
γ

(
ln
( c

θ

))
> 2.8188

]
= 0.31%

and

P
[
ln
( c

θ

)
<−1.2

]
= P

[
γ

(
ln
( c

θ

))
<−1.4649

]
= 0.21%.

Therefore, P
[
γ
(
ln
( c

θ

))
∈ [−1.4649,2.8188]

]
= 99.48%. In other words, most of the time,

individuals are moderately risk averse or risk loving. Some researchers may believe that the

degree of relative risk aversion is less than 2. Our computation shows that P[γ
(
ln
( c

θ

))
≥

2] = 1.64%. What distinguishes our model from existing models most is that the probability

of one individual being locally risk seeking, P[γ
(
ln
( c

θ

))
≤ 0], is 48.09%.

Figure 4 shows that the degree of relative risk aversion is roughly monotonically in-

creasing in the consumption-reference ratio. The monotonicity is strict when this ratio (in

logarithm) is positive. This pattern indicates that the diminishing rate of sensitivity to gains

increases as the consumption-reference ratio rises. Also, the diminishing rate of sensitivity
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Figure 4: Degree of Relative Risk Aversion

to losses rises as the consumption-reference ratio (near the low extreme) decreases. The

pattern of the estimated degree of relative risk aversion helps explain the accelerated ex-

pansion. The smaller the sensitivity to gains or losses, the more responsive consumption is

to the change in asset returns.

5.4 Concave-shaped utility and the equity premium puzzle

This section examines an alternative asset pricing model based on micro consumption and

concave-shaped utility. Though we have rejected concave-shaped consumption utility, it

is still meaningful to see how the alternative model generates a high equity premium and

how the equity premium puzzle arises in this model. This exercise will further advance our

understanding of how an S-shaped consumption utility works.

We specify the alternative model the same as our primary model, except that we restrict

the gain-loss utility function to be globally concave shaped. To have a concave specification

of ul(·), we substitute the above condition (V) with β
l
ν+2−2β

l
ν+1+β

l
ν≤ 0,ν = 0, . . . ,n−2.

Also, global concavity requires that the left derivative of the gain-loss utility function µ at
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the reference point be greater than or equal to its right derivative. Let µ
′
−(0) and µ

′
+(0)

denote the left and right derivatives, respectively. We can compute them by

µ
′
−(0)≡ lim

z↑0
u
′
l(0) = n(βl

n−β
l
n−1)

1
(z̄− z)n−1 (0− z)n−1,

µ
′
+(0)≡ lim

z↓0
u
′
g(0) = n(βg

1−β
g
0)

1
(z̄− z)n−1 (z̄)

n−1.

In the implementation of the estimation, we set z̄ = 1.5 and z = −1.5. Therefore, the

restriction µ
′
−(0)≥ µ

′
+(0) holds if and only if β

g
1 ≤−β

l
n−1.

The alternative model actually fits the data slightly better than our model with an S-

shaped consumption utility. First, the estimated WK distance is 0.0969, a little bit smaller

than our model’s WK distance. Therefore, the alternative model’s performance in explain-

ing the cross-section of expected return is also comparable to the CAPM. Second, the fitted

risk-free rate is 0.3253%, close to the realized risk-free rate, 0.32%. Third, the fitted equity

premium is 2.1372% per quarter, 12% larger than the observed equity premium. Fourth,

none of the Hansen-Jagannathan inequalities of the 96 portfolios is rejected.

However, the equity premium puzzle is not solved by the alternative model. The esti-

mated degree of relative risk aversion, given a high consumption-reference ratio, is absurdly

large. For example, γ(1.1) = 2.7100, γ(1.2) = 3.7025, γ(1.3) = 5.9729, γ(1.4) = 13.2339,

γ(1.45) = 27.9217, γ(1.475) = 56.9482, and γ(1.5) = 2800.0479. With high levels of risk

aversion, it is relatively easy to fit high equity returns or the cross-section of stock returns.

See Constantinides (1990), Campbell (1996), Cochrane (1996), and Parker (2003), among

others.

We find that the estimated degree of relative risk aversion below the reference point is

smaller than that above the reference point. The estimates of γ below the reference point fall

within the range [1.4597,1.7782], while the lowest estimate of γ above the reference point

is 1.9947. All of the absurd estimates of γ are associated with high consumption levels.

This result differs sharply from Campbell and Cochrane (1999). Their habit model predicts

an incredibly high degree of relative risk aversion at low consumption levels. The S-shaped
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consumption utility can explain this finding. Changing the utility function for losses from

our primary convex specification to the alternative concave form may have reduced a large

amount of the generated total equity premium. The curvature of the utility function for

gains must increase significantly to yield a high equity premium.

6 Conclusion

This paper presents empirical evidence for an S-shaped consumption utility by applying it

to solve the equity premium puzzle. Using micro consumption data, we find that the low-

quantile consumption growth of many households correlates negatively with equity returns

or risk-free returns. This finding rejects a concave-shaped consumption utility because this

utility leads to a violation of the law of one price in pricing stocks. Moreover, our empirical

evidence supports an S-shaped consumption utility. First, our structural asset pricing model

shows that the S-shaped consumption utility can solve the equity premium puzzle. Second,

the S-shaped consumption utility can account for the stylized facts in micro consumption,

including the “big bang” and “accelerated expansion.”

Appendix A Group analysis under an alternative classifi-

cation Criterion

In this appendix, we investigate the cross-state (i.e., cross-quantile) heterogeneity in s-

tockholders’ consumption behaviors within several subgroups. We define ten subgroups

according to one-period lagged growth rates of stockholders’ Type-II consumption. Within

each period, the first decile group is labeled Group #1; the second decile group is labeled

Group #2; and so forth. Denote Qg
t (τ) the τth quantile of the period t consumption-growth

39



Table A.1: Quantile regression (consumption of Type II; within all stockholders; grouped
by lagged consumption growth)

#Group=4; xt = log(Re
t+1) #Group=6; xt = log(Re

t+1) #Group=8; xt = log(Re
t+1)

δ
g
1(τ) sign(δg

1) δ
g
1(τ) sign(δg

1) δ
g
1(τ) sign(δg

1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -0.2828 0.1333 0.0169 -0.0530 0.1309 0.3429 0.2728 0.1359 0.0223
0.10 -0.2290 0.1206 0.0288 -0.0686 0.1221 0.2870 0.1653 0.1187 0.0818
0.15 -0.2091 0.1002 0.0184 -0.0822 0.1031 0.2125 0.1995 0.1057 0.0296
0.20 -0.2155 0.0928 0.0101 -0.0009 0.0976 0.4965 0.1088 0.0913 0.1166
0.25 -0.1216 0.0879 0.0833 0.0250 0.0937 0.3948 0.0216 0.0914 0.4065
0.30 -0.0682 0.0860 0.2138 0.0138 0.0951 0.4421 0.0631 0.0920 0.2465
0.35 -0.0731 0.0951 0.2211 -0.0042 0.1009 0.4836 0.0356 0.0865 0.3403
0.40 -0.0368 0.0912 0.3432 -0.0452 0.1026 0.3298 0.0006 0.0864 0.4974
0.45 -0.0033 0.0978 0.4864 -0.0170 0.1079 0.4373 0.0496 0.0891 0.2888
0.50 0.0068 0.0985 0.4724 -0.0917 0.1128 0.2082 -0.0122 0.0957 0.4492
0.55 -0.0017 0.1027 0.4935 -0.0729 0.1186 0.2694 -0.0024 0.0968 0.4902
0.60 -0.0113 0.1074 0.4581 -0.0480 0.1110 0.3328 -0.0671 0.1230 0.2928
0.65 -0.0434 0.1177 0.3560 -0.0787 0.1396 0.2865 -0.1264 0.1218 0.1497
0.70 -0.0511 0.1209 0.3362 -0.0176 0.1455 0.4519 -0.1577 0.1426 0.1344
0.75 0.0016 0.1273 0.4951 -0.0201 0.1454 0.4449 -0.1254 0.1479 0.1982
0.80 -0.1511 0.1312 0.1246 -0.0227 0.1619 0.4442 -0.1061 0.1550 0.2468
0.85 -0.1344 0.1397 0.1681 -0.0926 0.1631 0.2851 -0.1613 0.1672 0.1673
0.90 -0.0598 0.1628 0.3567 -0.0853 0.1942 0.3302 -0.1926 0.1866 0.1510
0.95 0.0504 0.1833 0.3917 -0.2088 0.2227 0.1743 -0.2843 0.2009 0.0786

distribution of the gth group. Consider the following simple linear mean regression model

Qg
t (τ) = δ

g
0(τ)+ x

′
tδ

g
1(τ)+ν

g
t , t = 1, . . . ,T ;g = 1, . . . ,G, (A.1)

where xt can be log(Re
t+1) or log(R f

t ). The slope δ
g
1(τ) represents the correlation between

asset returns and the τth quantile of consumption growth of the gth group. Ju and Li (2021)

show that the estimates of (A.1) are asymptotically equivalent to those of a standard quan-

tile regression.

Table A.1 presents the estimation results for some subgroups of all stockholders. The

left panel shows that many lower quantiles of consumption growth rates of Group #4 are

negatively correlated with stock returns. The middle and the right panels show that there

are (weak) negative correlations useful to account for the equity premium puzzle within

Group #6 and Group #8.
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Table A.2: Quantile regression (consumption of Type II; within young stockholders
(age≤30); grouped by lagged consumption growth )

#Group=3; xt = log(Re
t+1) #Group=3; xt = log(R f

t ) #Group=6; xt = log(R f
t ) #Group=7; xt = log(Re

t+1)
δ

g
1(τ) sign(δg

1) δ
g
1(τ) sign(δg

1) δ
g
1(τ) sign(δg

1) δ
g
1(τ) sign(δg

1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -0.3180 0.1992 0.0552 -4.0091 1.9926 0.0221 -5.8916 1.7551 0.0004 -0.4265 0.2152 0.0238
0.10 -0.3378 0.1995 0.0452 -4.0908 1.9970 0.0203 -5.7671 1.7589 0.0005 -0.4097 0.2173 0.0297
0.15 -0.3461 0.1987 0.0408 -3.6454 1.9967 0.0339 -6.0295 1.7898 0.0004 -0.4191 0.2188 0.0277
0.20 -0.3126 0.1928 0.0524 -3.8668 1.9290 0.0225 -5.5160 1.8240 0.0012 -0.4030 0.2269 0.0379
0.25 -0.2657 0.2047 0.0972 -3.5890 2.0485 0.0399 -3.7431 1.7562 0.0165 -0.4487 0.2222 0.0217
0.30 -0.1882 0.2134 0.1889 -2.2957 2.1439 0.1421 -3.1860 1.7588 0.0350 -0.4587 0.2360 0.0260
0.35 -0.0721 0.2110 0.3664 -1.7260 2.1187 0.2076 -2.7206 1.7114 0.0560 -0.4904 0.2384 0.0198
0.40 -0.2763 0.2051 0.0890 -1.8532 2.0716 0.1855 -1.9642 1.7331 0.1285 -0.4405 0.2460 0.0367
0.45 -0.2396 0.2195 0.1376 -0.1742 2.2190 0.4687 -3.4113 2.2133 0.0616 -0.2470 0.2437 0.1554
0.50 -0.0508 0.2250 0.4107 0.9981 2.2625 0.3295 -3.6607 2.2891 0.0549 -0.2559 0.2389 0.1421
0.55 0.0812 0.2301 0.3620 0.7333 2.3153 0.3757 -1.8983 2.4830 0.2223 -0.2502 0.2383 0.1468
0.60 0.0835 0.2273 0.3567 1.2058 2.2853 0.2989 -1.6418 2.6564 0.2683 -0.2219 0.2542 0.1914
0.65 0.2070 0.2407 0.1949 3.0093 2.4137 0.1062 0.1136 2.6959 0.4832 -0.0873 0.2874 0.3807
0.70 0.1784 0.2500 0.2378 4.3635 2.4904 0.0399 2.1006 2.7472 0.2222 -0.1862 0.2911 0.2612
0.75 0.1466 0.2463 0.2759 4.4653 2.4495 0.0342 3.6071 2.8659 0.1041 -0.1200 0.2912 0.3402
0.80 0.1945 0.2546 0.2224 5.2045 2.5249 0.0196 4.6847 2.7701 0.0454 -0.0151 0.2894 0.4792
0.85 0.1400 0.2610 0.2958 5.6843 2.5796 0.0138 4.7340 2.7376 0.0419 -0.2166 0.2877 0.2258
0.90 0.2644 0.2690 0.1629 7.5430 2.6331 0.0021 4.9333 2.7663 0.0373 -0.2418 0.2900 0.2023
0.95 0.2769 0.2706 0.1531 7.8052 2.6446 0.0016 4.9912 2.7648 0.0355 -0.2395 0.2894 0.2039

Table A.2 displays the results for some subgroups of all young stockholders. The results

for Group #3 and Group #6 indicate that the low quantiles of consumption growth rates of

individuals in these groups are negatively correlated with risk-free returns. Also, in Group

#3 and Group #7, stock returns vary negatively with the lower quantiles of consumption

growth. Most of these negative correlations are statistically significant. Therefore, we con-

clude that many young stockholders become locally risk-seeking when their consumption

level is relatively low.
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Havránek, T. (2015): “Measuring Intertemporal Substitution: The Importance of Method
Choices and Selective Reporting,” Journal of the European Economic Association,
13 (6), 1180-1204.

Ju, G., and Q. Li (2021): “Empirical Evidence for Applying S-Shaped Consumption Util-
ity in Consumption-Based Asset Pricing Models,”
Available at SSRN: https://www.ssrn.com/abstract=3730422.

Ju, N., and J. Miao (2012): “Ambiguity, Learning, and Asset Returns,” Econometrica, 80
(2), 559-591.

Kahneman, D., and A. Tversky (1979): “Prospect Theory: An Analysis of Decision under
Risk,” Econometrica, 47 (2), 263-292.

Koenker, R., and G. Bassett Jr (1978): “Regression Quantiles,” Econometrica, 46 (1),
33-50.

LeRoy, S., and R. Porter (1981): “The Present Value Relation: Tests Based on Implied
Variance Bounds,” Econometrica, 49 (3), 555-574.

Mankiw, N. G., and S. P. Zeldes (1991): “The Consumption of Stockholders and Non-
stockholders,” Journal of Financial Economics, 29 (1), 97-111.

Mehra, R., and E. C. Prescott (1985): “The Equity Premium: A Puzzle,” Journal of Mon-
etary Economy, 15 (2), 145-161.

—— (2003): “The Equity Premium in Retrospect,” Handbook of the Economics of Fi-
nance, Edited by G. M. Constantinides, M. Harris and R. Stulz, 889-938.

Parker, Jonathan A., “Consumption Risk and Expected Stock Returns,” American Eco-
nomic Review, 93 (2003), 376-382.

Routledge, B. R., and S. E. Zin (2010): “Generalized Disappointment Aversion and Asset
Prices,” Journal of Finance, 65 (4), 1303-1332.

Shiller, R. J. (1981): “Do Stock Prices Move Too Much to be Justified by Subsequent
Changes in Dividends?” American Economic Review, 71 (3), 421-436.

—— (2000): “Irrational Exuberance,” Ewing, NJ, USA: Princeton University Press.
Weil, P. (1989): “The Equity Premium Puzzle and the Risk-Free Rate Puzzle,” Journal of

Monetary Economics, 24 (3), 401-421.
Yogo, M. (2008): “Asset Prices under Habit Formation and Reference-Dependent Prefer-

ences,” Journal of Business & Economic Statistics, 26 (2), 131-143.

43



Online Appendices to “Identifying S-Shaped Consumption
Utility and Solving the Equity Premium Puzzle”

Appendix B Robustness Against Measurement Errors in

Consumption

B.1 The errors-in-variables model

Let ci,t and c∗i,t respectively denote the observed and (unobserved) true measures of con-
sumption of the ith individual in period t. Suppose that

log(ci,t) = log(c∗i,t)+ζi,t ,

where ζi,t is the measurement error of consumption in logarithm. Taking differencing, we
obtain

log(
ci,t+1

ci,t
) = log(

c∗i,t+1

c∗i,t
)+(ζi,t+1−ζi,t).

A similar specification is used by Daniel and Marshall (1997). We assume that measure-
ment errors (ζi,t ,ζi,t+1) and true consumption measures (c∗i,t ,c

∗
i,t+1) are independent condi-

tional on a vector of macroeconomic variables, which we denote by xt .
For notational simplicity, let ηi,t denote ζi,t+1−ζi,t , and yi,t and y∗i,t represent log(ci,t+1

ci,t
)

and log(
c∗i,t+1
c∗i,t

), respectively. Thus, we have

yi,t = y∗i,t +ηi,t . (B.1)

Our interest is the conditional quantile function of y∗i,t given xt . However, without fur-
ther restrictions or extra information, we are unable to obtain the true consumption mea-
sure. In the extant literature, approaches that can identify models with classical measure-
ment errors need repeated measurements (Hausman et al. 1991, Li 2002, Schennach 2004a
and 2004b), validation data (Hu and Ridder 2004), or instruments (Hausman et al. 1991,
Newey 2001, Schennach 2007), none of which are available to us.

Our strategy is to investigate a continuum collection of potentially true measures and
check if all of these measures exhibit the same pattern. If all exhibit the big bang and ac-
celerated expansion, for example, and if this collection contains the truth, we are confident
that the true consumption exhibits the same phenomena.
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We assume that the measurement error is normally distributed with zero mean and a
standard deviation of ση, i.e.,

ηi,t ∼ N(0,σ2
η).

Suppose ση ∈ [0,σε] where we allow for σε to be as large as 90% of the standard de-
viation of yit . The potential measures of consumption growth rates are characterized by
the parameters ση. We denote the conditional τ-th quantile consumption growth given xt

and ση as Qy∗i,t |xt (τ|ση). Thus, the collection of distributions of consumption growth under
consideration is {

Qy∗i,t |xt (τ|ση) : ση ∈ [0,σε]
}
. (B.2)

In practice, we choose ση = ρσε, ρ = 0.9,0.8 . . . ,0.2,0.1. We interpret ρ as the degree of
noise severity.

B.2 Conditional deconvolution

We estimate the conditional quantile function of true consumption growth rates using the
method of conditional deconvolution.

By the assumption that ηi,t and y∗it in Equation (B.1) are conditionally independent, we
have the conditional deconvolution formula

φy∗i,t |xt
(s|ση) =

φyi,t |xt
(s)

φηi,t
(s|ση)

, (B.3)

where φ
′s indicate the conditional characteristic functions. Let i be a complex number such

that i2 = −1. The numerator, φyi,t |xt
(s) = E(eisyi,t |xt), can be computed from data using a

nonparametric kernel method. The denominator has a closed-form formula: φηi,t
(s|ση) =

e−
1
2 σ2

ηs2
. Therefore, φy∗i,t |xt

(s|ση) is estimable.
Following Gil-Pelaez’s (1951) formula

Fy∗i,t |xt (ω|ση) =
1
2
− lim

χ→∞

∫
χ

−χ

e−isω

2πis
φy∗i,t |xt

(s|ση)ds,

we can obtain the corresponding conditional cumulative distribution function (CDF). Let
φ̂y∗i,t |xt

(s|ση)= φ̂yi,t |xt
(s)/φηi,t

(s|ση) denote the estimated conditional characteristic function.
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A natural estimator of Fy∗i,t |xt (ω|ση) is

F̂y∗i,t |xt (ω|ση) =
1
2
+ lim

χ→∞

∫
χ

−χ

sin(sω)RE
φ̂yi,t |xt (s)

− cos(sω)IM
φ̂yi,t |xt (s)

2πφηi,t |xt
(s)

ds,

where RE and IM represent real and imaginary parts of a complex number, respectively.
Further, inverting the estimated conditional CDF leads to an estimate of the conditional

quantile function, which we denote by Q̂y∗i,t |xt (τ|ση).

B.3 Bandwidth selection

To apply the kernel estimation of the numerator in (B.3), we need to choose optimal band-
widths. Consider the pooled cross-sectional data {(yi,t ,xt), t = 1, . . . ,T ; i = 1, . . . ,N}where
yi,t is the consumption growth rate, and xt is a dimX-dimensional vector of macroeconomic-
s variables. The kernel estimator of the characteristic function φyit

(s|xt) = E[eisyit |xt = x] is
estimated by

φ̂yit
(s|xt = x) =

∑
N
i=1 ∑

T
t=1 eisyit K(xt ,x)

∑
N
i=1 ∑

T
t=1 K(xt ,x)

,

where K(xt ,x) = ∏
dimX
l=1 k(xtl−xl

hl
) and hl, l = 1, . . . ,dimX are bandwidths. Following Ju et

al. (2019), we choose bandwidths to minimize

CV (h1, . . . ,hdimX) =
∫

∞

−∞

[
N

∑
i=1

T

∑
t=1

[cos(syit)−λ
cos(xt)]

2 +
N

∑
i=1

T

∑
t=1

[sin(syit)−λ
sin(xt)]

2

]
ds,

where λ
cos(xt) and λ

sin(xt) are leave-one-out estimates of E[cos(syit)|xt ] and E[sin(syit)|xt ],
respectively.

In our empirical application, T = 121 and N (for the whole sample) is around 2,600.
The sample size is too large to finish running the bandwidth selection algorithm in a reason-
able time. To tackle this issue, we first select optimal bandwidths for a smaller subsample
and then make an inference of the bandwidths for the original large sample. We write the
optimal bandwidth as hopt

s = cs · std(xt,s) ·A(N,T ),s = 1, . . . ,dimX , where A(N,T ) is the
known order shown later. We first obtain the optimal coefficients cs for a smaller subsam-
ple with, say, T = 121 and N = 200. The observations in each period of the subsample
are randomly drawn from the corresponding period of the large sample. We repeat this
procedure 100 times and calculate the median (denoted by c∗s ) of these coefficients. Then,
we take hopt

s = c∗s · std(xt,s) ·A(2600,121),s = 1, . . . ,dimX as the optimal bandwidths for
the large sample.
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Now, let us derive the order of the optimal bandwidths. Consider the model

yit = E(yit |xt)+uit = g(xt)+uit ; t = 1, . . . ,T ; i = 1, . . . ,N.

The nonparametric kernel estimator is

ĝ(x) =
1

NT h1...hdimX
∑

N
i=1 ∑

T
t=1 yitK(xt−x

h )

f̂ (x)
,

where the denominator f̂ (x) = 1
T h1,...,hdimX

∑
T
t=1 K(xt−x

h ) is the density estimator. We write

ĝ(x)−g(x) = [ĝ(x)−g(x)] f̂ (x)
f̂ (x)

≡ m̂(x)
f̂ (x)

, where m̂(x) = [ĝ(x)−g(x)] f̂ (x)≡ m̂1(x)+ m̂2(x), and

m̂1(x)=
1

NT h1 . . .hdimX

N

∑
i=1

T

∑
t=1

[g(xt)−g(x)]K(
xt− x

h
)=

1
T h1, . . . ,hdimX

T

∑
t=1

[g(xt)−g(x)]K(
xt− x

h
),

m̂2(x) =
1

NT h1 . . .hdimX

N

∑
i=1

T

∑
t=1

uitK(
xt− x

h
)

Following the derivation on page 62 of the textbook by Li and Racine (2007), it is easy to
get

m̂1(x) = f (x)
dimX

∑
s=1

Bs(x)h2
s +Op(η

3/2
2 +η

1/2
2 η

1/2
1 ),

where η1 =(T h1 . . .hdimX)
−1 and η2 =∑

dimX
s=1 h2

s . Furthermore, it is easy to obtain E[m̂2(x)]2 =
η3Ω(x)+ s.o., where η3 = (NT h1 . . .hdimX)

−1. Hence, we have

m̂(x) = m̂1(x)+ m̂2(x) = f (x)
dimX

∑
s=1

Bs(x)h2
s +Op(η

3/2
2 +η

1/2
2 η

1/2
1 +η

1/2
3 ).

As xt in our application is of one dimension, then

E[ĝ(x)−g(x)]2 = O(h4 +
h
T
+

1
NT h

).

If 1
T = o(h3), then h ∼ (NT )−1/5. This implies that 1

T = o((NT )−3/5), which is false
since N >> T . Thus, h4 is a small term with an order larger than that of h/T . Therefore,
hopt

1 = c1 · std(xt)N−1/2.
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B.4 Estimation and results

Let Q̂y∗i,t |xt (τ|ση) denote the estimator of the conditional quantile function Qy∗i,t |xt (τ|ση). In
the spirit of the equivalence between Model (19) and Model (20), we specify a linear model
as

Q̂y∗i,t |xt (τ|ση) = δ0(τ|ση)+ x
′
tδ1(τ|ση)+νt , t = 1, . . . ,T, (B.4)

where ση ∈ [0,σε] and νt denotes the approximation errors. The slope coefficient δ1(τ|ση)

reflects the correlation between xt and the τth quantile of consumption growth rates. Every
time we run the linear regression, we fix the values of ση and τ. Given their values, the
dependent variable is a function of xt . Thus, the linear model (B.4) is identified using
time variations. The simple ordinary least squares estimation yields good estimates of
δ0(τ|ση) and δ1(τ|ση). For statistical inference, we apply bootstrapping using sampling
with replacement (replicated 250 times).

Corresponding to the specifications of the standard quantile regression (19), we specify
y∗i,t in (B.4) as the logarithm of consumption growth rates of Type I, II, or III. The regressor

xt is log(Re
t+1) or log(R f

t ). Tables B.1 – B.6 present the estimation results for the whole
sample. Also, Tables B.7 and B.8 present the estimation results of regression (B.4) for
Type-II consumption of young households.

As expected, we find that measurement errors affect the magnitudes of the parameter
estimation. For example, in Table B.4, the estimate of the slope coefficient δ1(τ|ση) at
quantile τ = 0.05 and ση = 0.9σε (i.e., the standard deviation of the measurement errors is
as large as 81% of that of the dependent variable) is -3.3677. As the noise gets smaller, its
magnitude becomes larger. When ση = 0.1σε, the estimate has a value of -9.1119.

However, our estimates suggest that the patterns of estimated δ1(τ|ση) revealed in the
standard regression assuming without measurement error remain unchanged. In particular,
the big bang and accelerated expansion are still prominent in all specifications of mea-
surement errors whenever these phenomena are observed from the corresponding standard
quantile estimation. Therefore, our results are robust against classic measurement errors.
This robustness is conceivable as Ju and Li (2021) showed by simulations that the big
bang does not disappear even though the measurement errors may result in some biases in
estimating the quantile regression coefficients.
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Table B.1: Quantile Regression (Whole Sample; Type-I Consumption; xt = log(Re
t+1))

ση = 0.9σε ση = 0.8σε ση = 0.7σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -0.0250 0.0116 0.0080 -0.0263 0.0129 0.0120 -0.0263 0.0147 0.0200
0.10 -0.0200 0.0103 0.0200 -0.0209 0.0108 0.0240 -0.0211 0.0114 0.0240
0.15 -0.0159 0.0095 0.0480 -0.0163 0.0098 0.0440 -0.0163 0.0101 0.0440
0.20 -0.0123 0.0091 0.0920 -0.0124 0.0092 0.0920 -0.0122 0.0094 0.1080
0.25 -0.0090 0.0087 0.1440 -0.0089 0.0088 0.1600 -0.0086 0.0089 0.1720
0.30 -0.0060 0.0085 0.2160 -0.0057 0.0085 0.2280 -0.0053 0.0086 0.2400
0.35 -0.0032 0.0083 0.3360 -0.0027 0.0083 0.3600 -0.0022 0.0084 0.3880
0.40 -0.0004 0.0082 0.4920 0.0001 0.0082 0.4720 0.0007 0.0082 0.4440
0.45 0.0023 0.0082 0.3760 0.0030 0.0081 0.3520 0.0036 0.0081 0.3400
0.50 0.0050 0.0081 0.2760 0.0058 0.0081 0.2440 0.0066 0.0081 0.1960
0.55 0.0078 0.0081 0.1600 0.0088 0.0081 0.1440 0.0096 0.0081 0.1280
0.60 0.0107 0.0082 0.0880 0.0118 0.0082 0.0640 0.0128 0.0082 0.0440
0.65 0.0137 0.0083 0.0400 0.0151 0.0083 0.0280 0.0162 0.0083 0.0240
0.70 0.0170 0.0085 0.0240 0.0187 0.0085 0.0160 0.0200 0.0085 0.0120
0.75 0.0206 0.0087 0.0120 0.0227 0.0088 0.0120 0.0244 0.0088 0.0120
0.80 0.0248 0.0090 0.0120 0.0275 0.0092 0.0040 0.0297 0.0093 0.0040
0.85 0.0298 0.0095 0.0040 0.0334 0.0098 0.0040 0.0364 0.0100 0.0000
0.90 0.0360 0.0103 0.0000 0.0413 0.0108 0.0000 0.0460 0.0113 0.0000
0.95 0.0445 0.0115 0.0000 0.0535 0.0127 0.0000 0.0629 0.0143 0.0000

ση = 0.6σε ση = 0.5σε ση = 0.4σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -0.0249 0.0169 0.0680 -0.0218 0.0222 0.1360 -0.0196 0.0244 0.1920
0.10 -0.0210 0.0119 0.0200 -0.0206 0.0123 0.0280 -0.0200 0.0126 0.0440
0.15 -0.0160 0.0103 0.0480 -0.0156 0.0105 0.0720 -0.0151 0.0106 0.0800
0.20 -0.0118 0.0095 0.1240 -0.0113 0.0096 0.1280 -0.0109 0.0097 0.1360
0.25 -0.0082 0.0090 0.1800 -0.0077 0.0090 0.2000 -0.0073 0.0091 0.2000
0.30 -0.0048 0.0086 0.2560 -0.0044 0.0087 0.2760 -0.0039 0.0087 0.3040
0.35 -0.0017 0.0084 0.4280 -0.0013 0.0084 0.4360 -0.0008 0.0084 0.4480
0.40 0.0013 0.0082 0.4280 0.0017 0.0083 0.4200 0.0021 0.0083 0.3960
0.45 0.0042 0.0081 0.2960 0.0047 0.0082 0.2720 0.0051 0.0082 0.2520
0.50 0.0072 0.0081 0.1760 0.0077 0.0081 0.1720 0.0081 0.0081 0.1520
0.55 0.0103 0.0081 0.0960 0.0108 0.0081 0.0680 0.0113 0.0082 0.0600
0.60 0.0135 0.0082 0.0360 0.0141 0.0082 0.0360 0.0146 0.0082 0.0360
0.65 0.0171 0.0083 0.0160 0.0178 0.0084 0.0160 0.0183 0.0084 0.0160
0.70 0.0211 0.0086 0.0120 0.0218 0.0086 0.0120 0.0224 0.0086 0.0120
0.75 0.0257 0.0089 0.0080 0.0266 0.0089 0.0080 0.0273 0.0090 0.0080
0.80 0.0313 0.0094 0.0040 0.0326 0.0095 0.0040 0.0334 0.0095 0.0000
0.85 0.0388 0.0102 0.0000 0.0406 0.0104 0.0000 0.0418 0.0105 0.0000
0.90 0.0499 0.0118 0.0000 0.0530 0.0122 0.0000 0.0553 0.0125 0.0000
0.95 0.0723 0.0161 0.0000 0.0804 0.0192 0.0040 0.0870 0.0210 0.0000

ση = 0.3σε ση = 0.2σε ση = 0.1σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -0.0192 0.0251 0.2160 -0.0195 0.0253 0.2360 -0.0198 0.0252 0.2240
0.10 -0.0195 0.0128 0.0520 -0.0191 0.0130 0.0560 -0.0189 0.0131 0.0640
0.15 -0.0146 0.0107 0.0960 -0.0143 0.0108 0.1000 -0.0141 0.0108 0.1000
0.20 -0.0105 0.0097 0.1480 -0.0102 0.0098 0.1600 -0.0100 0.0098 0.1640
0.25 -0.0069 0.0091 0.2040 -0.0066 0.0091 0.2080 -0.0064 0.0091 0.2120
0.30 -0.0036 0.0087 0.3280 -0.0033 0.0087 0.3400 -0.0032 0.0088 0.3480
0.35 -0.0005 0.0085 0.4680 -0.0003 0.0085 0.4800 -0.0001 0.0085 0.4920
0.40 0.0025 0.0083 0.3840 0.0027 0.0083 0.3720 0.0028 0.0083 0.3680
0.45 0.0054 0.0082 0.2400 0.0057 0.0082 0.2360 0.0058 0.0082 0.2360
0.50 0.0084 0.0082 0.1480 0.0087 0.0082 0.1480 0.0088 0.0082 0.1440
0.55 0.0116 0.0082 0.0520 0.0118 0.0082 0.0520 0.0119 0.0082 0.0560
0.60 0.0149 0.0082 0.0280 0.0152 0.0083 0.0240 0.0153 0.0083 0.0200
0.65 0.0186 0.0084 0.0120 0.0189 0.0084 0.0120 0.0190 0.0084 0.0120
0.70 0.0228 0.0086 0.0120 0.0231 0.0086 0.0120 0.0232 0.0087 0.0120
0.75 0.0278 0.0090 0.0040 0.0281 0.0090 0.0040 0.0283 0.0090 0.0040
0.80 0.0341 0.0096 0.0000 0.0344 0.0096 0.0000 0.0347 0.0096 0.0000
0.85 0.0427 0.0106 0.0000 0.0433 0.0107 0.0000 0.0436 0.0107 0.0000
0.90 0.0569 0.0127 0.0000 0.0578 0.0128 0.0000 0.0584 0.0129 0.0000
0.95 0.0922 0.0220 0.0000 0.0958 0.0227 0.0000 0.0978 0.0230 0.0000
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Table B.2: Quantile Regression (Whole Sample; Type-I Consumption; xt = log(R f
t ))

ση = 0.9σε ση = 0.8σε ση = 0.7σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -0.7390 0.1096 0.0000 -1.0642 0.1228 0.0000 -1.3912 0.1392 0.0000
0.10 -0.3493 0.0972 0.0000 -0.5295 0.1029 0.0000 -0.6799 0.1089 0.0000
0.15 -0.0609 0.0899 0.2240 -0.1754 0.0928 0.0480 -0.2629 0.0958 0.0000
0.20 0.1724 0.0850 0.0160 0.0949 0.0866 0.1400 0.0390 0.0881 0.3200
0.25 0.3717 0.0818 0.0000 0.3182 0.0824 0.0000 0.2809 0.0833 0.0000
0.30 0.5493 0.0793 0.0000 0.5125 0.0796 0.0000 0.4877 0.0800 0.0000
0.35 0.7121 0.0777 0.0000 0.6882 0.0776 0.0000 0.6725 0.0778 0.0000
0.40 0.8656 0.0766 0.0000 0.8520 0.0764 0.0000 0.8434 0.0763 0.0000
0.45 1.0133 0.0760 0.0000 1.0087 0.0756 0.0000 1.0062 0.0755 0.0000
0.50 1.1583 0.0758 0.0000 1.1623 0.0753 0.0000 1.1654 0.0752 0.0000
0.55 1.3034 0.0760 0.0000 1.3160 0.0755 0.0000 1.3247 0.0754 0.0000
0.60 1.4516 0.0766 0.0000 1.4733 0.0762 0.0000 1.4882 0.0761 0.0000
0.65 1.6059 0.0776 0.0000 1.6380 0.0774 0.0000 1.6603 0.0774 0.0000
0.70 1.7699 0.0792 0.0000 1.8151 0.0792 0.0000 1.8465 0.0795 0.0000
0.75 1.9490 0.0815 0.0000 2.0113 0.0819 0.0000 2.0554 0.0825 0.0000
0.80 2.1504 0.0847 0.0000 2.2369 0.0859 0.0000 2.3002 0.0870 0.0000
0.85 2.3860 0.0893 0.0000 2.5102 0.0916 0.0000 2.6055 0.0939 0.0000
0.90 2.6771 0.0962 0.0000 2.8674 0.1011 0.0000 3.0258 0.1060 0.0000
0.95 3.0686 0.1079 0.0000 3.4015 0.1194 0.0000 3.7308 0.1334 0.0000

ση = 0.6σε ση = 0.5σε ση = 0.4σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -1.7029 0.1582 0.0000 -1.9788 0.1806 0.0000 -2.1911 0.1988 0.0000
0.10 -0.7960 0.1144 0.0000 -0.8780 0.1190 0.0000 -0.9308 0.1226 0.0000
0.15 -0.3248 0.0982 0.0000 -0.3652 0.1005 0.0000 -0.3893 0.1021 0.0000
0.20 0.0014 0.0895 0.4680 -0.0218 0.0907 0.4040 -0.0348 0.0916 0.3400
0.25 0.2569 0.0840 0.0000 0.2427 0.0847 0.0080 0.2351 0.0853 0.0120
0.30 0.4722 0.0804 0.0000 0.4634 0.0808 0.0000 0.4590 0.0812 0.0000
0.35 0.6629 0.0780 0.0000 0.6578 0.0782 0.0000 0.6555 0.0785 0.0000
0.40 0.8384 0.0764 0.0000 0.8361 0.0766 0.0000 0.8352 0.0768 0.0000
0.45 1.0051 0.0755 0.0000 1.0049 0.0756 0.0000 1.0053 0.0757 0.0000
0.50 1.1678 0.0752 0.0000 1.1697 0.0752 0.0000 1.1710 0.0754 0.0000
0.55 1.3307 0.0754 0.0000 1.3346 0.0755 0.0000 1.3370 0.0756 0.0000
0.60 1.4980 0.0761 0.0000 1.5042 0.0762 0.0000 1.5078 0.0764 0.0000
0.65 1.6747 0.0775 0.0000 1.6836 0.0777 0.0000 1.6887 0.0779 0.0000
0.70 1.8672 0.0798 0.0000 1.8798 0.0800 0.0000 1.8870 0.0803 0.0000
0.75 2.0848 0.0830 0.0000 2.1030 0.0835 0.0000 2.1134 0.0839 0.0000
0.80 2.3433 0.0880 0.0000 2.3707 0.0888 0.0000 2.3867 0.0895 0.0000
0.85 2.6733 0.0960 0.0000 2.7180 0.0977 0.0000 2.7453 0.0988 0.0000
0.90 3.1478 0.1105 0.0000 3.2343 0.1142 0.0000 3.2905 0.1170 0.0000
0.95 4.0397 0.1497 0.0000 4.3095 0.1684 0.0000 4.5194 0.1837 0.0000

ση = 0.3σε ση = 0.2σε ση = 0.1σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -2.3282 0.2081 0.0000 -2.4061 0.2142 0.0000 -2.4433 0.2174 0.0000
0.10 -0.9619 0.1252 0.0000 -0.9785 0.1268 0.0000 -0.9861 0.1278 0.0000
0.15 -0.4024 0.1033 0.0000 -0.4088 0.1040 0.0000 -0.4115 0.1045 0.0000
0.20 -0.0415 0.0923 0.3240 -0.0445 0.0927 0.3040 -0.0454 0.0930 0.3040
0.25 0.2315 0.0857 0.0120 0.2303 0.0860 0.0120 0.2299 0.0861 0.0120
0.30 0.4572 0.0815 0.0000 0.4567 0.0817 0.0000 0.4566 0.0818 0.0000
0.35 0.6547 0.0787 0.0000 0.6547 0.0789 0.0000 0.6549 0.0790 0.0000
0.40 0.8352 0.0769 0.0000 0.8354 0.0770 0.0000 0.8357 0.0771 0.0000
0.45 1.0058 0.0759 0.0000 1.0063 0.0760 0.0000 1.0066 0.0761 0.0000
0.50 1.1720 0.0754 0.0000 1.1726 0.0756 0.0000 1.1730 0.0757 0.0000
0.55 1.3384 0.0757 0.0000 1.3393 0.0757 0.0000 1.3397 0.0758 0.0000
0.60 1.5098 0.0765 0.0000 1.5108 0.0766 0.0000 1.5113 0.0767 0.0000
0.65 1.6915 0.0780 0.0000 1.6928 0.0781 0.0000 1.6934 0.0782 0.0000
0.70 1.8908 0.0805 0.0000 1.8926 0.0806 0.0000 1.8933 0.0807 0.0000
0.75 2.1190 0.0842 0.0000 2.1216 0.0844 0.0000 2.1227 0.0845 0.0000
0.80 2.3954 0.0900 0.0000 2.3996 0.0903 0.0000 2.4014 0.0905 0.0000
0.85 2.7605 0.0998 0.0000 2.7683 0.1003 0.0000 2.7717 0.1007 0.0000
0.90 3.3240 0.1190 0.0000 3.3420 0.1204 0.0000 3.3504 0.1211 0.0000
0.95 4.6621 0.1934 0.0000 4.7463 0.1992 0.0000 4.7885 0.2025 0.0000
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Table B.3: Quantile Regression (Whole Sample; Type-III Consumption; xt = log(Re
t+1))

ση = 0.9σε ση = 0.8σε ση = 0.7σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -0.1068 0.0282 0.0000 -0.1139 0.0482 0.0080 -0.0912 0.1123 0.0920
0.10 -0.0875 0.0222 0.0000 -0.0962 0.0246 0.0000 -0.1026 0.0269 0.0000
0.15 -0.0714 0.0193 0.0000 -0.0775 0.0205 0.0000 -0.0818 0.0217 0.0000
0.20 -0.0578 0.0176 0.0000 -0.0621 0.0183 0.0000 -0.0651 0.0190 0.0000
0.25 -0.0459 0.0164 0.0000 -0.0490 0.0169 0.0000 -0.0511 0.0173 0.0000
0.30 -0.0352 0.0157 0.0040 -0.0375 0.0159 0.0040 -0.0389 0.0162 0.0040
0.35 -0.0253 0.0151 0.0520 -0.0269 0.0153 0.0480 -0.0279 0.0155 0.0440
0.40 -0.0160 0.0148 0.1600 -0.0170 0.0149 0.1520 -0.0176 0.0150 0.1400
0.45 -0.0069 0.0146 0.3080 -0.0074 0.0147 0.2960 -0.0077 0.0148 0.2920
0.50 0.0020 0.0146 0.4480 0.0019 0.0146 0.4600 0.0019 0.0147 0.4480
0.55 0.0109 0.0147 0.2040 0.0113 0.0147 0.2040 0.0116 0.0148 0.2080
0.60 0.0199 0.0149 0.0880 0.0209 0.0150 0.0880 0.0215 0.0150 0.0680
0.65 0.0294 0.0153 0.0280 0.0309 0.0154 0.0280 0.0320 0.0155 0.0240
0.70 0.0394 0.0159 0.0160 0.0417 0.0160 0.0080 0.0433 0.0161 0.0080
0.75 0.0503 0.0166 0.0000 0.0537 0.0169 0.0000 0.0560 0.0171 0.0000
0.80 0.0626 0.0177 0.0000 0.0674 0.0181 0.0000 0.0708 0.0185 0.0000
0.85 0.0769 0.0192 0.0000 0.0840 0.0200 0.0000 0.0894 0.0207 0.0000
0.90 0.0945 0.0216 0.0000 0.1058 0.0231 0.0000 0.1152 0.0246 0.0000
0.95 0.1183 0.0257 0.0000 0.1389 0.0297 0.0000 0.1627 0.0369 0.0000

ση = 0.6σε ση = 0.5σε ση = 0.4σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -0.0662 0.1181 0.2320 -0.0866 0.0877 0.1840 -0.1101 0.0747 0.0840
0.10 -0.1073 0.0290 0.0000 -0.1106 0.0305 0.0000 -0.1128 0.0315 0.0000
0.15 -0.0847 0.0227 0.0000 -0.0864 0.0234 0.0000 -0.0874 0.0240 0.0000
0.20 -0.0669 0.0196 0.0000 -0.0679 0.0201 0.0000 -0.0684 0.0204 0.0000
0.25 -0.0523 0.0177 0.0000 -0.0529 0.0181 0.0000 -0.0532 0.0183 0.0000
0.30 -0.0397 0.0165 0.0080 -0.0401 0.0168 0.0080 -0.0403 0.0170 0.0160
0.35 -0.0284 0.0157 0.0400 -0.0287 0.0159 0.0440 -0.0287 0.0161 0.0440
0.40 -0.0179 0.0152 0.1400 -0.0181 0.0154 0.1400 -0.0181 0.0155 0.1400
0.45 -0.0079 0.0149 0.3040 -0.0079 0.0150 0.3040 -0.0080 0.0152 0.3040
0.50 0.0019 0.0148 0.4520 0.0019 0.0149 0.4560 0.0020 0.0150 0.4480
0.55 0.0118 0.0149 0.2200 0.0119 0.0150 0.2280 0.0119 0.0151 0.2240
0.60 0.0219 0.0151 0.0680 0.0221 0.0152 0.0720 0.0222 0.0153 0.0760
0.65 0.0326 0.0156 0.0240 0.0329 0.0157 0.0200 0.0331 0.0158 0.0200
0.70 0.0443 0.0163 0.0080 0.0448 0.0164 0.0080 0.0450 0.0166 0.0080
0.75 0.0574 0.0173 0.0000 0.0583 0.0175 0.0000 0.0587 0.0177 0.0000
0.80 0.0731 0.0189 0.0000 0.0745 0.0192 0.0000 0.0752 0.0194 0.0000
0.85 0.0932 0.0214 0.0000 0.0956 0.0219 0.0000 0.0970 0.0223 0.0000
0.90 0.1226 0.0260 0.0000 0.1278 0.0271 0.0000 0.1311 0.0279 0.0000
0.95 0.1914 0.0457 0.0000 0.2160 0.0498 0.0000 0.2296 0.0516 0.0000

ση = 0.3σε ση = 0.2σε ση = 0.1σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -0.1309 0.0692 0.0240 -0.1456 0.0668 0.0120 -0.1540 0.0658 0.0120
0.10 -0.1142 0.0322 0.0000 -0.1149 0.0326 0.0000 -0.1153 0.0328 0.0000
0.15 -0.0878 0.0244 0.0000 -0.0879 0.0246 0.0000 -0.0880 0.0248 0.0000
0.20 -0.0685 0.0207 0.0000 -0.0685 0.0209 0.0000 -0.0685 0.0210 0.0000
0.25 -0.0532 0.0185 0.0000 -0.0532 0.0187 0.0000 -0.0531 0.0188 0.0000
0.30 -0.0403 0.0171 0.0200 -0.0402 0.0172 0.0200 -0.0402 0.0173 0.0200
0.35 -0.0287 0.0162 0.0480 -0.0287 0.0163 0.0480 -0.0286 0.0164 0.0480
0.40 -0.0181 0.0156 0.1360 -0.0180 0.0157 0.1400 -0.0180 0.0157 0.1400
0.45 -0.0079 0.0152 0.3120 -0.0079 0.0153 0.3080 -0.0079 0.0154 0.3160
0.50 0.0020 0.0151 0.4520 0.0020 0.0152 0.4520 0.0020 0.0152 0.4520
0.55 0.0120 0.0152 0.2240 0.0120 0.0152 0.2280 0.0120 0.0153 0.2280
0.60 0.0222 0.0154 0.0760 0.0222 0.0155 0.0760 0.0222 0.0155 0.0760
0.65 0.0331 0.0159 0.0200 0.0331 0.0160 0.0200 0.0331 0.0160 0.0200
0.70 0.0451 0.0167 0.0080 0.0451 0.0167 0.0080 0.0451 0.0168 0.0080
0.75 0.0589 0.0178 0.0000 0.0589 0.0179 0.0000 0.0589 0.0179 0.0000
0.80 0.0755 0.0196 0.0000 0.0757 0.0197 0.0000 0.0757 0.0198 0.0000
0.85 0.0978 0.0225 0.0000 0.0981 0.0227 0.0000 0.0982 0.0228 0.0000
0.90 0.1329 0.0285 0.0000 0.1338 0.0289 0.0000 0.1342 0.0291 0.0000
0.95 0.2366 0.0531 0.0000 0.2399 0.0541 0.0000 0.2411 0.0547 0.0000
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Table B.4: Quantile Regression (Whole Sample; Type-III Consumption; xt = log(R f
t ))

ση = 0.9σε ση = 0.8σε ση = 0.7σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -3.3677 0.2771 0.0000 -4.5378 0.3274 0.0000 -5.8637 0.5501 0.0000
0.10 -2.0935 0.2389 0.0000 -2.7008 0.2547 0.0000 -3.2079 0.2703 0.0000
0.15 -1.2004 0.2183 0.0000 -1.5868 0.2266 0.0000 -1.8831 0.2344 0.0000
0.20 -0.4982 0.2049 0.0120 -0.7656 0.2099 0.0000 -0.9617 0.2145 0.0000
0.25 0.0916 0.1954 0.3120 -0.1016 0.1986 0.3240 -0.2399 0.2016 0.1080
0.30 0.6097 0.1885 0.0000 0.4676 0.1906 0.0040 0.3669 0.1927 0.0520
0.35 1.0804 0.1834 0.0000 0.9763 0.1848 0.0000 0.9023 0.1863 0.0000
0.40 1.5199 0.1796 0.0000 1.4460 0.1806 0.0000 1.3926 0.1818 0.0000
0.45 1.9398 0.1770 0.0000 1.8919 0.1777 0.0000 1.8555 0.1788 0.0000
0.50 2.3497 0.1753 0.0000 2.3254 0.1759 0.0000 2.3043 0.1770 0.0000
0.55 2.7579 0.1746 0.0000 2.7567 0.1753 0.0000 2.7505 0.1764 0.0000
0.60 3.1725 0.1748 0.0000 3.1957 0.1758 0.0000 3.2054 0.1770 0.0000
0.65 3.6025 0.1762 0.0000 3.6535 0.1775 0.0000 3.6814 0.1792 0.0000
0.70 4.0588 0.1788 0.0000 4.1437 0.1808 0.0000 4.1947 0.1830 0.0000
0.75 4.5560 0.1831 0.0000 4.6856 0.1861 0.0000 4.7681 0.1892 0.0000
0.80 5.1156 0.1896 0.0000 5.3090 0.1945 0.0000 5.4396 0.1991 0.0000
0.85 5.7727 0.1999 0.0000 6.0668 0.2079 0.0000 6.2798 0.2156 0.0000
0.90 6.5927 0.2165 0.0000 7.0699 0.2310 0.0000 7.4527 0.2455 0.0000
0.95 7.7238 0.2476 0.0000 8.6306 0.2823 0.0000 9.5331 0.3251 0.0000

ση = 0.6σε ση = 0.5σε ση = 0.4σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -7.1289 0.5945 0.0000 -8.0269 0.5740 0.0000 -8.6054 0.5689 0.0000
0.10 -3.5943 0.2840 0.0000 -3.8604 0.2951 0.0000 -4.0253 0.3031 0.0000
0.15 -2.0926 0.2412 0.0000 -2.2284 0.2463 0.0000 -2.3092 0.2502 0.0000
0.20 -1.0954 0.2185 0.0000 -1.1799 0.2216 0.0000 -1.2293 0.2240 0.0000
0.25 -0.3326 0.2043 0.0360 -0.3908 0.2065 0.0280 -0.4250 0.2081 0.0160
0.30 0.2994 0.1946 0.0760 0.2568 0.1963 0.0920 0.2314 0.1976 0.1080
0.35 0.8522 0.1878 0.0000 0.8198 0.1892 0.0000 0.7997 0.1903 0.0000
0.40 1.3554 0.1831 0.0000 1.3303 0.1843 0.0000 1.3140 0.1853 0.0000
0.45 1.8287 0.1800 0.0000 1.8093 0.1811 0.0000 1.7957 0.1821 0.0000
0.50 2.2866 0.1782 0.0000 2.2722 0.1793 0.0000 2.2608 0.1803 0.0000
0.55 2.7416 0.1777 0.0000 2.7318 0.1788 0.0000 2.7224 0.1799 0.0000
0.60 3.2058 0.1785 0.0000 3.2009 0.1798 0.0000 3.1936 0.1809 0.0000
0.65 3.6928 0.1809 0.0000 3.6937 0.1824 0.0000 3.6889 0.1838 0.0000
0.70 4.2203 0.1851 0.0000 4.2289 0.1871 0.0000 4.2278 0.1886 0.0000
0.75 4.8141 0.1921 0.0000 4.8344 0.1947 0.0000 4.8391 0.1967 0.0000
0.80 5.5181 0.2035 0.0000 5.5581 0.2070 0.0000 5.5731 0.2098 0.0000
0.85 6.4183 0.2223 0.0000 6.4972 0.2279 0.0000 6.5343 0.2322 0.0000
0.90 7.7300 0.2586 0.0000 7.9084 0.2693 0.0000 8.0073 0.2775 0.0000
0.95 10.3776 0.3787 0.0000 11.0959 0.4504 0.0000 11.5776 0.4725 0.0000

ση = 0.3σε ση = 0.2σε ση = 0.1σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -8.9201 0.5681 0.0000 -9.0616 0.5680 0.0000 -9.1119 0.5681 0.0000
0.10 -4.1168 0.3086 0.0000 -4.1614 0.3120 0.0000 -4.1800 0.3138 0.0000
0.15 -2.3527 0.2529 0.0000 -2.3736 0.2546 0.0000 -2.3823 0.2556 0.0000
0.20 -1.2558 0.2257 0.0000 -1.2686 0.2269 0.0000 -1.2740 0.2275 0.0000
0.25 -0.4435 0.2094 0.0160 -0.4528 0.2103 0.0160 -0.4568 0.2107 0.0160
0.30 0.2170 0.1986 0.1280 0.2095 0.1993 0.1440 0.2061 0.1997 0.1480
0.35 0.7879 0.1912 0.0000 0.7813 0.1919 0.0000 0.7781 0.1923 0.0000
0.40 1.3037 0.1862 0.0000 1.2975 0.1868 0.0000 1.2943 0.1871 0.0000
0.45 1.7864 0.1829 0.0000 1.7804 0.1835 0.0000 1.7770 0.1838 0.0000
0.50 2.2521 0.1811 0.0000 2.2461 0.1817 0.0000 2.2426 0.1821 0.0000
0.55 2.7143 0.1808 0.0000 2.7082 0.1814 0.0000 2.7045 0.1817 0.0000
0.60 3.1861 0.1819 0.0000 3.1798 0.1826 0.0000 3.1758 0.1830 0.0000
0.65 3.6822 0.1848 0.0000 3.6759 0.1855 0.0000 3.6715 0.1860 0.0000
0.70 4.2222 0.1899 0.0000 4.2159 0.1908 0.0000 4.2114 0.1913 0.0000
0.75 4.8357 0.1982 0.0000 4.8298 0.1994 0.0000 4.8249 0.2000 0.0000
0.80 5.5742 0.2118 0.0000 5.5696 0.2133 0.0000 5.5650 0.2140 0.0000
0.85 6.5460 0.2353 0.0000 6.5457 0.2373 0.0000 6.5421 0.2386 0.0000
0.90 8.0523 0.2835 0.0000 8.0667 0.2872 0.0000 8.0684 0.2893 0.0000
0.95 11.8426 0.4834 0.0000 11.9563 0.4898 0.0000 11.9922 0.4930 0.0000
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Table B.5: Quantile Regression (Whole Sample; Type-II Consumption; xt = log(Re
t+1))

ση = 0.9σε ση = 0.8σε ση = 0.7σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -0.0034 0.0102 0.4000 -0.0013 0.0108 0.4440 0.0008 0.0113 0.4760
0.10 -0.0034 0.0087 0.3840 -0.0021 0.0088 0.4240 -0.0009 0.0089 0.4680
0.15 -0.0028 0.0080 0.3920 -0.0017 0.0080 0.4240 -0.0007 0.0080 0.4680
0.20 -0.0019 0.0075 0.4080 -0.0010 0.0075 0.4680 -0.0001 0.0075 0.4840
0.25 -0.0010 0.0073 0.4480 -0.0002 0.0072 0.4920 0.0006 0.0072 0.4680
0.30 -0.0001 0.0071 0.4720 0.0007 0.0071 0.4840 0.0015 0.0070 0.4200
0.35 0.0009 0.0071 0.4720 0.0017 0.0070 0.4200 0.0024 0.0070 0.3680
0.40 0.0019 0.0070 0.4000 0.0027 0.0070 0.3400 0.0034 0.0069 0.3160
0.45 0.0030 0.0070 0.3360 0.0038 0.0070 0.2960 0.0044 0.0069 0.2640
0.50 0.0042 0.0071 0.2640 0.0050 0.0070 0.2360 0.0056 0.0070 0.2040
0.55 0.0054 0.0071 0.2200 0.0062 0.0071 0.1760 0.0069 0.0070 0.1600
0.60 0.0068 0.0072 0.1720 0.0076 0.0072 0.1400 0.0083 0.0071 0.1080
0.65 0.0084 0.0074 0.1240 0.0092 0.0073 0.1040 0.0099 0.0073 0.0720
0.70 0.0101 0.0076 0.0840 0.0111 0.0076 0.0600 0.0119 0.0075 0.0520
0.75 0.0122 0.0079 0.0520 0.0133 0.0079 0.0440 0.0142 0.0078 0.0400
0.80 0.0148 0.0083 0.0440 0.0161 0.0083 0.0280 0.0171 0.0083 0.0200
0.85 0.0181 0.0090 0.0160 0.0199 0.0090 0.0080 0.0212 0.0090 0.0080
0.90 0.0230 0.0101 0.0080 0.0255 0.0103 0.0080 0.0276 0.0104 0.0040
0.95 0.0313 0.0127 0.0120 0.0365 0.0137 0.0040 0.0413 0.0145 0.0040

ση = 0.6σε ση = 0.5σε ση = 0.4σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 0.0026 0.0117 0.4200 0.0041 0.0119 0.3840 0.0053 0.0121 0.3600
0.10 0.0002 0.0090 0.5000 0.0011 0.0090 0.4480 0.0018 0.0090 0.4240
0.15 0.0001 0.0080 0.4920 0.0008 0.0080 0.4440 0.0014 0.0080 0.4280
0.20 0.0006 0.0075 0.4680 0.0012 0.0075 0.4320 0.0017 0.0075 0.4080
0.25 0.0013 0.0072 0.4360 0.0018 0.0072 0.4040 0.0022 0.0072 0.3880
0.30 0.0021 0.0070 0.3840 0.0026 0.0070 0.3720 0.0030 0.0070 0.3560
0.35 0.0030 0.0069 0.3360 0.0034 0.0069 0.3240 0.0038 0.0069 0.3120
0.40 0.0039 0.0069 0.2880 0.0044 0.0069 0.2720 0.0047 0.0069 0.2480
0.45 0.0050 0.0069 0.2240 0.0054 0.0069 0.2040 0.0058 0.0069 0.1920
0.50 0.0061 0.0069 0.1800 0.0066 0.0069 0.1640 0.0069 0.0069 0.1480
0.55 0.0074 0.0070 0.1400 0.0078 0.0070 0.1280 0.0082 0.0070 0.1120
0.60 0.0089 0.0071 0.1040 0.0093 0.0071 0.0880 0.0096 0.0071 0.0800
0.65 0.0105 0.0073 0.0560 0.0109 0.0072 0.0560 0.0113 0.0072 0.0440
0.70 0.0125 0.0075 0.0400 0.0129 0.0075 0.0400 0.0133 0.0074 0.0400
0.75 0.0148 0.0078 0.0360 0.0153 0.0078 0.0280 0.0157 0.0077 0.0200
0.80 0.0179 0.0083 0.0200 0.0185 0.0082 0.0160 0.0189 0.0082 0.0160
0.85 0.0222 0.0090 0.0080 0.0229 0.0090 0.0080 0.0234 0.0089 0.0040
0.90 0.0291 0.0104 0.0040 0.0303 0.0104 0.0000 0.0310 0.0104 0.0000
0.95 0.0454 0.0149 0.0040 0.0484 0.0150 0.0040 0.0504 0.0150 0.0040

ση = 0.3σε ση = 0.2σε ση = 0.1σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 0.0061 0.0122 0.3400 0.0066 0.0122 0.3240 0.0069 0.0122 0.3200
0.10 0.0023 0.0090 0.4080 0.0026 0.0090 0.3920 0.0028 0.0090 0.3800
0.15 0.0018 0.0080 0.4120 0.0021 0.0080 0.3960 0.0022 0.0080 0.3920
0.20 0.0020 0.0074 0.3920 0.0023 0.0074 0.3880 0.0024 0.0074 0.3840
0.25 0.0026 0.0072 0.3800 0.0028 0.0071 0.3720 0.0029 0.0071 0.3560
0.30 0.0033 0.0070 0.3280 0.0035 0.0070 0.3280 0.0036 0.0070 0.3200
0.35 0.0041 0.0069 0.2920 0.0043 0.0069 0.2840 0.0044 0.0069 0.2760
0.40 0.0050 0.0068 0.2400 0.0052 0.0068 0.2320 0.0053 0.0068 0.2240
0.45 0.0060 0.0068 0.1840 0.0062 0.0068 0.1840 0.0063 0.0068 0.1720
0.50 0.0072 0.0069 0.1400 0.0073 0.0069 0.1320 0.0074 0.0069 0.1320
0.55 0.0084 0.0070 0.1000 0.0086 0.0069 0.0960 0.0087 0.0069 0.0880
0.60 0.0099 0.0071 0.0760 0.0100 0.0071 0.0600 0.0101 0.0071 0.0560
0.65 0.0115 0.0072 0.0440 0.0117 0.0072 0.0440 0.0118 0.0072 0.0440
0.70 0.0135 0.0074 0.0360 0.0137 0.0074 0.0360 0.0138 0.0074 0.0360
0.75 0.0160 0.0077 0.0200 0.0161 0.0077 0.0200 0.0162 0.0077 0.0200
0.80 0.0192 0.0082 0.0080 0.0194 0.0082 0.0080 0.0195 0.0082 0.0080
0.85 0.0238 0.0089 0.0040 0.0240 0.0089 0.0040 0.0241 0.0089 0.0040
0.90 0.0315 0.0103 0.0000 0.0319 0.0103 0.0000 0.0320 0.0103 0.0000
0.95 0.0516 0.0148 0.0040 0.0522 0.0147 0.0000 0.0525 0.0146 0.0000
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Table B.6: Quantile Regression (Whole Sample; Type-II Consumption; xt = log(R f
t ))

ση = 0.9σε ση = 0.8σε ση = 0.7σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -0.2683 0.1005 0.0040 -0.3005 0.1065 0.0000 -0.3125 0.1120 0.0000
0.10 -0.0239 0.0850 0.3920 -0.0236 0.0865 0.3960 -0.0132 0.0876 0.4360
0.15 0.1421 0.0772 0.0280 0.1522 0.0774 0.0200 0.1676 0.0775 0.0080
0.20 0.2724 0.0725 0.0000 0.2868 0.0722 0.0000 0.3036 0.0720 0.0000
0.25 0.3832 0.0695 0.0000 0.3998 0.0690 0.0000 0.4172 0.0686 0.0000
0.30 0.4826 0.0675 0.0000 0.5006 0.0668 0.0000 0.5180 0.0664 0.0000
0.35 0.5751 0.0661 0.0000 0.5943 0.0655 0.0000 0.6118 0.0650 0.0000
0.40 0.6640 0.0653 0.0000 0.6840 0.0646 0.0000 0.7017 0.0641 0.0000
0.45 0.7514 0.0649 0.0000 0.7725 0.0642 0.0000 0.7904 0.0636 0.0000
0.50 0.8395 0.0648 0.0000 0.8617 0.0641 0.0000 0.8800 0.0636 0.0000
0.55 0.9303 0.0651 0.0000 0.9540 0.0644 0.0000 0.9729 0.0639 0.0000
0.60 1.0259 0.0658 0.0000 1.0516 0.0650 0.0000 1.0714 0.0646 0.0000
0.65 1.1292 0.0669 0.0000 1.1575 0.0662 0.0000 1.1789 0.0657 0.0000
0.70 1.2437 0.0684 0.0000 1.2759 0.0678 0.0000 1.2995 0.0673 0.0000
0.75 1.3751 0.0707 0.0000 1.4132 0.0702 0.0000 1.4405 0.0698 0.0000
0.80 1.5327 0.0740 0.0000 1.5805 0.0738 0.0000 1.6138 0.0736 0.0000
0.85 1.7336 0.0792 0.0000 1.7987 0.0794 0.0000 1.8441 0.0795 0.0000
0.90 2.0159 0.0879 0.0000 2.1189 0.0895 0.0000 2.1924 0.0906 0.0000
0.95 2.4939 0.1069 0.0000 2.7190 0.1144 0.0000 2.9018 0.1209 0.0000

ση = 0.6σε ση = 0.5σε ση = 0.4σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -0.3069 0.1164 0.0080 -0.2892 0.1195 0.0160 -0.2660 0.1213 0.0200
0.10 0.0034 0.0883 0.4880 0.0225 0.0887 0.4080 0.0411 0.0888 0.3440
0.15 0.1851 0.0775 0.0040 0.2025 0.0774 0.0040 0.2182 0.0773 0.0000
0.20 0.3207 0.0717 0.0000 0.3367 0.0716 0.0000 0.3505 0.0714 0.0000
0.25 0.4337 0.0682 0.0000 0.4484 0.0681 0.0000 0.4609 0.0679 0.0000
0.30 0.5340 0.0660 0.0000 0.5479 0.0658 0.0000 0.5594 0.0656 0.0000
0.35 0.6273 0.0646 0.0000 0.6403 0.0644 0.0000 0.6511 0.0642 0.0000
0.40 0.7168 0.0637 0.0000 0.7293 0.0635 0.0000 0.7394 0.0633 0.0000
0.45 0.8052 0.0633 0.0000 0.8173 0.0631 0.0000 0.8269 0.0629 0.0000
0.50 0.8948 0.0632 0.0000 0.9066 0.0630 0.0000 0.9157 0.0629 0.0000
0.55 0.9878 0.0635 0.0000 0.9993 0.0633 0.0000 1.0081 0.0632 0.0000
0.60 1.0867 0.0642 0.0000 1.0981 0.0640 0.0000 1.1066 0.0638 0.0000
0.65 1.1947 0.0654 0.0000 1.2062 0.0651 0.0000 1.2144 0.0650 0.0000
0.70 1.3164 0.0670 0.0000 1.3283 0.0668 0.0000 1.3365 0.0667 0.0000
0.75 1.4593 0.0695 0.0000 1.4720 0.0693 0.0000 1.4803 0.0692 0.0000
0.80 1.6362 0.0734 0.0000 1.6505 0.0732 0.0000 1.6593 0.0731 0.0000
0.85 1.8736 0.0796 0.0000 1.8916 0.0795 0.0000 1.9017 0.0794 0.0000
0.90 2.2403 0.0913 0.0000 2.2683 0.0916 0.0000 2.2828 0.0917 0.0000
0.95 3.0316 0.1255 0.0000 3.1096 0.1282 0.0000 3.1474 0.1295 0.0000

ση = 0.3σε ση = 0.2σε ση = 0.1σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -0.2428 0.1221 0.0320 -0.2239 0.1224 0.0400 -0.2119 0.1225 0.0520
0.10 0.0570 0.0887 0.2680 0.0690 0.0887 0.2200 0.0764 0.0886 0.1920
0.15 0.2311 0.0772 0.0000 0.2406 0.0772 0.0000 0.2464 0.0771 0.0000
0.20 0.3616 0.0713 0.0000 0.3697 0.0712 0.0000 0.3745 0.0712 0.0000
0.25 0.4708 0.0678 0.0000 0.4779 0.0677 0.0000 0.4822 0.0677 0.0000
0.30 0.5683 0.0655 0.0000 0.5748 0.0655 0.0000 0.5786 0.0654 0.0000
0.35 0.6594 0.0641 0.0000 0.6652 0.0640 0.0000 0.6687 0.0640 0.0000
0.40 0.7471 0.0632 0.0000 0.7525 0.0632 0.0000 0.7557 0.0631 0.0000
0.45 0.8341 0.0628 0.0000 0.8391 0.0628 0.0000 0.8421 0.0627 0.0000
0.50 0.9225 0.0627 0.0000 0.9272 0.0627 0.0000 0.9299 0.0627 0.0000
0.55 1.0145 0.0631 0.0000 1.0189 0.0630 0.0000 1.0214 0.0630 0.0000
0.60 1.1126 0.0637 0.0000 1.1167 0.0637 0.0000 1.1191 0.0637 0.0000
0.65 1.2202 0.0649 0.0000 1.2240 0.0648 0.0000 1.2262 0.0648 0.0000
0.70 1.3420 0.0666 0.0000 1.3455 0.0665 0.0000 1.3474 0.0665 0.0000
0.75 1.4855 0.0691 0.0000 1.4888 0.0690 0.0000 1.4904 0.0690 0.0000
0.80 1.6645 0.0729 0.0000 1.6673 0.0728 0.0000 1.6686 0.0728 0.0000
0.85 1.9070 0.0793 0.0000 1.9094 0.0792 0.0000 1.9104 0.0792 0.0000
0.90 2.2890 0.0916 0.0000 2.2910 0.0915 0.0000 2.2912 0.0915 0.0000
0.95 3.1601 0.1296 0.0000 3.1604 0.1295 0.0000 3.1572 0.1294 0.0000
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Table B.7: Quantile Regression (Young Households; Type-II Consumption; xt = log(Rt+1))
ση = 0.9σε ση = 0.8σε ση = 0.7σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -0.0574 0.0264 0.0040 -0.0577 0.0283 0.0120 -0.0576 0.0299 0.0120
0.10 -0.0515 0.0223 0.0040 -0.0515 0.0229 0.0040 -0.0511 0.0233 0.0040
0.15 -0.0463 0.0202 0.0040 -0.0459 0.0203 0.0040 -0.0454 0.0204 0.0040
0.20 -0.0418 0.0188 0.0040 -0.0412 0.0188 0.0040 -0.0406 0.0188 0.0040
0.25 -0.0377 0.0179 0.0040 -0.0370 0.0178 0.0040 -0.0363 0.0177 0.0040
0.30 -0.0340 0.0172 0.0080 -0.0332 0.0170 0.0080 -0.0324 0.0169 0.0080
0.35 -0.0304 0.0166 0.0160 -0.0295 0.0165 0.0200 -0.0287 0.0163 0.0320
0.40 -0.0269 0.0163 0.0640 -0.0260 0.0160 0.0640 -0.0251 0.0159 0.0640
0.45 -0.0234 0.0160 0.0800 -0.0224 0.0157 0.0920 -0.0216 0.0156 0.0960
0.50 -0.0198 0.0158 0.1160 -0.0188 0.0155 0.1240 -0.0179 0.0154 0.1400
0.55 -0.0162 0.0157 0.1560 -0.0150 0.0154 0.1640 -0.0141 0.0153 0.1840
0.60 -0.0123 0.0157 0.2120 -0.0110 0.0154 0.2440 -0.0100 0.0152 0.2640
0.65 -0.0081 0.0158 0.3120 -0.0067 0.0155 0.3280 -0.0056 0.0153 0.3520
0.70 -0.0035 0.0160 0.4000 -0.0018 0.0157 0.4600 -0.0006 0.0156 0.4960
0.75 0.0019 0.0164 0.4600 0.0039 0.0162 0.4160 0.0053 0.0160 0.3760
0.80 0.0082 0.0171 0.3080 0.0107 0.0169 0.2720 0.0126 0.0168 0.2400
0.85 0.0163 0.0183 0.1920 0.0197 0.0183 0.1600 0.0222 0.0183 0.1200
0.90 0.0276 0.0207 0.1040 0.0327 0.0212 0.0640 0.0366 0.0215 0.0360
0.95 0.0507 0.0330 0.0560 0.0589 0.0338 0.0440 0.0653 0.0354 0.0360

ση = 0.6σε ση = 0.5σε ση = 0.4σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -0.0573 0.0311 0.0200 -0.0569 0.0318 0.0280 -0.0565 0.0322 0.0280
0.10 -0.0506 0.0235 0.0040 -0.0499 0.0236 0.0080 -0.0493 0.0237 0.0080
0.15 -0.0447 0.0205 0.0040 -0.0440 0.0205 0.0040 -0.0434 0.0205 0.0040
0.20 -0.0399 0.0188 0.0040 -0.0392 0.0187 0.0040 -0.0386 0.0187 0.0040
0.25 -0.0356 0.0176 0.0040 -0.0350 0.0176 0.0040 -0.0344 0.0175 0.0080
0.30 -0.0317 0.0168 0.0080 -0.0311 0.0168 0.0160 -0.0306 0.0167 0.0160
0.35 -0.0280 0.0162 0.0320 -0.0274 0.0162 0.0320 -0.0269 0.0161 0.0360
0.40 -0.0244 0.0158 0.0640 -0.0238 0.0157 0.0800 -0.0234 0.0157 0.0880
0.45 -0.0208 0.0155 0.1040 -0.0203 0.0154 0.1080 -0.0198 0.0154 0.1080
0.50 -0.0172 0.0153 0.1400 -0.0166 0.0152 0.1480 -0.0161 0.0152 0.1600
0.55 -0.0133 0.0151 0.1920 -0.0128 0.0151 0.2000 -0.0123 0.0150 0.2000
0.60 -0.0092 0.0151 0.2720 -0.0086 0.0151 0.2880 -0.0082 0.0150 0.3000
0.65 -0.0047 0.0152 0.3680 -0.0041 0.0151 0.3960 -0.0037 0.0151 0.4080
0.70 0.0004 0.0155 0.4800 0.0010 0.0154 0.4720 0.0015 0.0153 0.4640
0.75 0.0064 0.0159 0.3600 0.0071 0.0158 0.3400 0.0076 0.0158 0.3280
0.80 0.0139 0.0167 0.2120 0.0147 0.0167 0.1960 0.0153 0.0167 0.1880
0.85 0.0239 0.0183 0.1080 0.0251 0.0183 0.0920 0.0258 0.0183 0.0880
0.90 0.0394 0.0218 0.0320 0.0412 0.0219 0.0240 0.0424 0.0219 0.0240
0.95 0.0708 0.0356 0.0240 0.0753 0.0357 0.0240 0.0785 0.0354 0.0160

ση = 0.3σε ση = 0.2σε ση = 0.1σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -0.0561 0.0323 0.0320 -0.0558 0.0323 0.0320 -0.0556 0.0323 0.0320
0.10 -0.0488 0.0237 0.0080 -0.0483 0.0236 0.0080 -0.0481 0.0236 0.0080
0.15 -0.0429 0.0204 0.0040 -0.0425 0.0204 0.0080 -0.0423 0.0204 0.0080
0.20 -0.0381 0.0187 0.0040 -0.0378 0.0186 0.0040 -0.0376 0.0186 0.0040
0.25 -0.0340 0.0175 0.0080 -0.0337 0.0175 0.0080 -0.0335 0.0175 0.0080
0.30 -0.0302 0.0167 0.0240 -0.0299 0.0167 0.0240 -0.0297 0.0167 0.0240
0.35 -0.0265 0.0161 0.0360 -0.0263 0.0161 0.0360 -0.0261 0.0161 0.0360
0.40 -0.0230 0.0157 0.0960 -0.0227 0.0156 0.0960 -0.0226 0.0156 0.0920
0.45 -0.0195 0.0153 0.1080 -0.0192 0.0153 0.1160 -0.0191 0.0153 0.1160
0.50 -0.0158 0.0151 0.1600 -0.0156 0.0151 0.1560 -0.0154 0.0151 0.1560
0.55 -0.0120 0.0150 0.2040 -0.0118 0.0150 0.2200 -0.0116 0.0150 0.2280
0.60 -0.0079 0.0150 0.3080 -0.0077 0.0150 0.3120 -0.0075 0.0149 0.3160
0.65 -0.0033 0.0151 0.4200 -0.0031 0.0150 0.4280 -0.0030 0.0150 0.4320
0.70 0.0018 0.0153 0.4480 0.0020 0.0153 0.4480 0.0022 0.0153 0.4440
0.75 0.0080 0.0158 0.3200 0.0082 0.0158 0.3160 0.0083 0.0157 0.3080
0.80 0.0157 0.0166 0.1800 0.0159 0.0166 0.1760 0.0161 0.0166 0.1760
0.85 0.0263 0.0182 0.0800 0.0266 0.0182 0.0800 0.0267 0.0182 0.0800
0.90 0.0431 0.0219 0.0240 0.0435 0.0218 0.0240 0.0436 0.0218 0.0240
0.95 0.0805 0.0350 0.0080 0.0817 0.0347 0.0040 0.0823 0.0344 0.0040
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Table B.8: Quantile Regression (Young Households; Type-II Consumption; xt = log(R f
t ))

ση = 0.9σε ση = 0.8σε ση = 0.7σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -1.1832 0.2349 0.0000 -1.2930 0.2520 0.0000 -1.3726 0.2698 0.0000
0.10 -0.8496 0.2023 0.0000 -0.8921 0.2069 0.0000 -0.9131 0.2110 0.0000
0.15 -0.6233 0.1857 0.0000 -0.6427 0.1866 0.0000 -0.6483 0.1874 0.0000
0.20 -0.4475 0.1757 0.0080 -0.4561 0.1751 0.0040 -0.4555 0.1746 0.0040
0.25 -0.3000 0.1695 0.0440 -0.3027 0.1680 0.0400 -0.2993 0.1669 0.0400
0.30 -0.1700 0.1654 0.1600 -0.1690 0.1635 0.1600 -0.1640 0.1621 0.1600
0.35 -0.0508 0.1628 0.3880 -0.0473 0.1606 0.3960 -0.0415 0.1591 0.4200
0.40 0.0616 0.1614 0.3640 0.0670 0.1591 0.3480 0.0733 0.1574 0.3480
0.45 0.1704 0.1608 0.1600 0.1774 0.1584 0.1480 0.1841 0.1567 0.1320
0.50 0.2780 0.1611 0.0360 0.2866 0.1586 0.0320 0.2938 0.1568 0.0200
0.55 0.3870 0.1621 0.0000 0.3973 0.1596 0.0000 0.4050 0.1577 0.0000
0.60 0.4997 0.1639 0.0000 0.5121 0.1613 0.0000 0.5204 0.1594 0.0000
0.65 0.6191 0.1666 0.0000 0.6342 0.1641 0.0000 0.6436 0.1622 0.0000
0.70 0.7490 0.1704 0.0000 0.7678 0.1680 0.0000 0.7791 0.1662 0.0000
0.75 0.8949 0.1758 0.0000 0.9195 0.1736 0.0000 0.9338 0.1720 0.0000
0.80 1.0659 0.1835 0.0000 1.1000 0.1819 0.0000 1.1196 0.1806 0.0000
0.85 1.2784 0.1952 0.0000 1.3297 0.1949 0.0000 1.3603 0.1945 0.0000
0.90 1.5679 0.2156 0.0000 1.6572 0.2187 0.0000 1.7147 0.2208 0.0000
0.95 2.0492 0.2867 0.0000 2.2557 0.2897 0.0000 2.4200 0.2990 0.0000

ση = 0.6σε ση = 0.5σε ση = 0.4σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -1.4194 0.2861 0.0000 -1.4367 0.2991 0.0000 -1.4326 0.3077 0.0000
0.10 -0.9175 0.2141 0.0000 -0.9109 0.2162 0.0000 -0.8988 0.2175 0.0000
0.15 -0.6443 0.1880 0.0000 -0.6353 0.1883 0.0000 -0.6243 0.1884 0.0000
0.20 -0.4493 0.1744 0.0040 -0.4403 0.1741 0.0040 -0.4308 0.1739 0.0040
0.25 -0.2923 0.1662 0.0400 -0.2840 0.1657 0.0400 -0.2758 0.1654 0.0400
0.30 -0.1571 0.1612 0.1720 -0.1496 0.1606 0.1760 -0.1425 0.1601 0.1840
0.35 -0.0348 0.1581 0.4440 -0.0281 0.1573 0.4560 -0.0220 0.1568 0.4600
0.40 0.0797 0.1562 0.3280 0.0857 0.1555 0.3120 0.0909 0.1549 0.3080
0.45 0.1902 0.1555 0.1120 0.1955 0.1546 0.0960 0.1999 0.1540 0.0920
0.50 0.2996 0.1555 0.0160 0.3042 0.1546 0.0120 0.3078 0.1540 0.0120
0.55 0.4105 0.1564 0.0000 0.4145 0.1554 0.0000 0.4174 0.1548 0.0000
0.60 0.5259 0.1581 0.0000 0.5293 0.1571 0.0000 0.5314 0.1564 0.0000
0.65 0.6491 0.1608 0.0000 0.6521 0.1598 0.0000 0.6535 0.1591 0.0000
0.70 0.7850 0.1648 0.0000 0.7877 0.1638 0.0000 0.7883 0.1630 0.0000
0.75 0.9408 0.1707 0.0000 0.9433 0.1696 0.0000 0.9433 0.1688 0.0000
0.80 1.1291 0.1795 0.0000 1.1320 0.1785 0.0000 1.1313 0.1778 0.0000
0.85 1.3754 0.1939 0.0000 1.3801 0.1933 0.0000 1.3790 0.1927 0.0000
0.90 1.7456 0.2219 0.0000 1.7572 0.2224 0.0000 1.7572 0.2222 0.0000
0.95 2.5254 0.3054 0.0000 2.5781 0.3105 0.0000 2.5917 0.3137 0.0000

ση = 0.3σε ση = 0.2σε ση = 0.1σε

δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1) δ1(τ|ση) sign(δ1)
τ = coef. s.e. p-value coef. s.e. p-value coef. s.e. p-value
0.05 -1.4175 0.3125 0.0000 -1.4003 0.3148 0.0000 -1.3877 0.3156 0.0000
0.10 -0.8858 0.2182 0.0000 -0.8745 0.2184 0.0000 -0.8672 0.2185 0.0000
0.15 -0.6138 0.1885 0.0000 -0.6054 0.1884 0.0000 -0.6000 0.1884 0.0000
0.20 -0.4222 0.1737 0.0040 -0.4155 0.1735 0.0040 -0.4113 0.1735 0.0040
0.25 -0.2687 0.1651 0.0520 -0.2632 0.1649 0.0560 -0.2598 0.1648 0.0600
0.30 -0.1365 0.1598 0.1920 -0.1319 0.1596 0.2040 -0.1292 0.1594 0.2080
0.35 -0.0169 0.1565 0.4680 -0.0132 0.1563 0.4760 -0.0109 0.1561 0.4760
0.40 0.0951 0.1545 0.3000 0.0982 0.1543 0.2920 0.1000 0.1541 0.2840
0.45 0.2033 0.1536 0.0800 0.2058 0.1534 0.0800 0.2072 0.1532 0.0760
0.50 0.3105 0.1536 0.0080 0.3124 0.1533 0.0040 0.3135 0.1531 0.0040
0.55 0.4194 0.1543 0.0000 0.4207 0.1541 0.0000 0.4214 0.1539 0.0000
0.60 0.5328 0.1560 0.0000 0.5335 0.1556 0.0000 0.5339 0.1555 0.0000
0.65 0.6541 0.1585 0.0000 0.6542 0.1582 0.0000 0.6541 0.1580 0.0000
0.70 0.7881 0.1625 0.0000 0.7875 0.1621 0.0000 0.7870 0.1619 0.0000
0.75 0.9421 0.1683 0.0000 0.9407 0.1679 0.0000 0.9397 0.1676 0.0000
0.80 1.1291 0.1772 0.0000 1.1266 0.1768 0.0000 1.1249 0.1766 0.0000
0.85 1.3754 0.1921 0.0000 1.3715 0.1917 0.0000 1.3687 0.1914 0.0000
0.90 1.7518 0.2219 0.0000 1.7453 0.2215 0.0000 1.7404 0.2214 0.0000
0.95 2.5836 0.3150 0.0000 2.5683 0.3154 0.0000 2.5557 0.3153 0.0000
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