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Abstract

Basel III requires banks to hold adequate stocks of liquid assets. This paper shows that a bank�s

liquidity stock has a profound e¤ect on its cost of obtaining liquidity under information asymmetry,

thereby having a complicated relationship with its lending behaviour. The lending rate is the lowest

both when the bank�s liquid assets are scarce and when they abound; it discontinuously surges when

their size ascends above a threshold; it varies non-monotonically with the size. This is driven by a new

e¤ect. Because liquid assets are also safe assets, exchanging risky assets for liquidity amounts to inverse

risk-shifting, which reduces the equity value and countervails lemons-dumping incentives. If the liquid

stock is su¢ ciently low, this inverse risk-shifting e¤ect is strong enough to overcome the lemons problem,

which, consequently, incurs no costs, as is in the case where the liquidity stock is su¢ ciently large to

cover the bank�s liquidity needs so no external liquid is sought, nor the lemons problem present.
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1 Introduction

In response to the 2008 �nancial crisis, the Basel Committee on Banking Supervision introduces the Liquidity

Coverage Ratio standard. It requires a bank to hold an adequate stock of High Quality Liquid Assets "to meet

its liquidity needs for a 30 calendar day liquidity stress scenario."1 This new standard is meant to improve

the resilience of banks in stressful times. But how would it a¤ect banks�lending behaviour in normal times?

One might intuitively think that a larger liquidity stock, by giving the bank a greater capacity to meet

its liquidity demands, should always be a good thing, leading to a lower lending cost and rate. However,

negative e¤ects are suggested by Malherbe (2014), when the market for banks to obtain external liquidity

is a­ icted by the lemons problem. In this paper, we show that a bank�s liquidity stock has much more

profound, complicated e¤ects on its lending behaviour than suggested by both of them. To a large extent,

this is driven by the interaction between a bank�s cost of obtaining liquidity with its endogenous leverage

ratio, which leads to a new e¤ect that has eluded the existing relevant studies.

The model economy lasts for three dates, as is typically with a model on bank liquidity. At date 0, one

bank is endowed a stock of liquid assets and lend to a continnum of entrepreneurs. Their demand for loans

is a decreasing function of the lending rate. The lending rate therefore determines the lending scale. The

bank �nances loans by issuing demand deposit contracts. The lending scale therefore pins down the deposit

scale. The deposit contract gives the depositors the right to withdraw its full present value at time 1. At

date 1, a fraction of depositors demands withdrawals. If the bank�s lending scale is above a threshold, its

liquidity stock is insu¢ cient to meet the withdrawal demands and the bank needs to sell loans for liquidity

(or alternatively, borrowing liquidity colllateralised with loans). This exchange is beset by the classic lemons

problem of Akerlof (1970): At date 1 the bank has private information about the quality of loans and its

exchanging loans for liquidity might be not because of its liquidity needs, but because it knows the loans

are of low quality �i.e. lemons �and wants to dump them. The lemons problem tends to increase the cost

of the bank obtaining external liquidity at date 1. Thereby, it a¤ects the bank�s lending decision at time

0, unless the bank elects its lending scale to be within an upper bound so that it resorts to no external

liqudity, but uses its liquidity stock only, to meet all the withdrawal demands. The tightness of this scale

constraint depends the size of its liquidity stock. If the stock is above a high threshold, the scale constraint

is non-binding, the date-1 lemons problem incurs no cost, and the bank�s lending rate is at the lowest level

(its scale the highest).

Interestingly, so is it rate if the bank�s liquidity stock is meagre enough. This is driven by the afore-

mentioned new e¤ect. Observe that liquid assets are typically also safe assets and thereby assume a double

1See "Basel III: The Liquidity Coverage Ratio and liquidity risk monitoring tools", page 10.

https://www.bis.org/publ/bcbs238.htm.
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identity. Loans, as having uncertain quality, are risky assets. Exchanging loans for liquidity, therefore,

amounts to a swap of risky assets with the risk free one, which is the opposite of classic risk-shifting à la

Jensen and Meckling (1976), or inverse risk-shifting. This swap, as is well known, increases the debt�s value

and decreases the equity�s if the debt is risky. The loss to the bank engenders disincentives from dumping

lemons. Moreover, the inverse risk-shifting e¤ect is stronger if the liquidity stock is smaller. Indeed, the loss

to the equity from inverse risk-shifting is the �ip side of the gain from risk-shifting, and hence, is larger if

the debt su¤ers a greater loss in the event of default, which happens if the liquidity stock, as a safe asset,

is smaller. Hence, if the liquidity stock is su¢ ciently small, below a low threshold, the inverse risk-shifting

e¤ect is strong enough to overcome the lemons problem: Regardless of the loan quality, the bank exchanges

for the same quantity of liquidity, the one exactly su¢ cient to meet the withdrawal demands, as if it had no

private information. As a result, if the liquidity stock is below the low threshold, the date 1 lemons problem

incurs no costs and the lending rate is at the lowest level, as in the case where the liquidity stock is above

the high threshold.

Between these two ends, the relationship of the liquidity stock to the lening rate is non-monotonic and

discontinuous. (a) The discontinuity. If the liquidity stock goes above the low threshold, the inverse risk-

shifting e¤ect is not strong enough to overcome the lemons problem. Consequently, the bank dumps lemons,

as much as possible. This rationally expected, the cost of external liquidity surges discontinuously at the

threshold, and so does the lending rate. (b) The non-monotonicity. First, if the liquidity stock is below but

close to the high threshold, the bank still elects to subject itself to the scale constraint, but now the constraint

is binding, though not that tight. Hence, the lending scale is at the upper bound where the liquidity stock

exactly covers the withdrawal demands. In this scenario, the lending scale increases, and hence the lending

rate decreases, with the liquidity stock. Intuitively, this conforms with the intuitive thinking: The higher

the stock, the greater the capacity to absorb losses and meet liquidity needs, which should allows for a larger

lending scale and a smaller lending rate. Second, if the liquidity stock is in another interval, the lending rate

increases with the liquidity stock. The mechanism is the one found by Malherbe (2014)2 : The higher the

liquidity stock, the less likely is the bank seeking external liquidity because of genuine liquidity needs, the

more likely for dumping lemons. As a result, the external liquidity is more costly, the lending rate higher.

This paper demonstrates that a bank�s liquidity stock has a profound impact on its lending behaviour

when the market for external liquity is beset by the lemons problem. At the core is the inverse risk-shifting

e¤ect, resulting from the interaction between the bank�s liquidity stock (as safe assets) and its endogenous

leverage. A large strand of literature, following the seminal work of Diamond and Dybvig (1983), consider

2Malherbe (2014), however, is not concerned with the relationship of a bank�s liquidity stock with its lending rate and scale.

Moreover, his paper focuses on the allocation of a given quantity of funds and is unconcerned with leverage on the liability side,

whereas the bank�s liability-side decision plays a key part in the present paper.
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bank liquidity from the angle of depositors sharing liquidity risks, with which we are not concerned. Our

concern is how a bank�s stock of liquid assets a¤ects its lending scale and rate, a subject with which the

literature is uninterested. Closer to our paper are the studies that examine how banks�ex ante investment

decisions are a¤ected by the lemons problem on the liquidity market; see Bolton et al (2011), Heider et al

(2015), Kirabaeva (2011), Malherbe (2014) and Parlour and Plantin (2008).3 While the �rst four studies

show that the lemons problem, by reducing the liquidity of the resale market, leads to ine¢ cient capital

allocation, market breakdowns, and multiple equilibria, Parlour and Plantin (2008) show that the illiquid

secondary market can improve e¢ ciency by preserving the bank�s ex ante incentive of monitoring. Those

studies are all abstracted from the liability-side contracts of the banks. In contrast, we consider the liability-

side contracting problem and thereby discover the inverse risk-shifting e¤ect, which countervails the lemons

problem. Moreover, all those papers are abstracted from either the lending rate or the liquidity holding and

therefore unconcerned with the e¤ects of the liquidity stock on the lending rate, with which this paper is

interested.

In this paper, if the bank�s optimal leverage ratio is above a threshold, the inverse risk-shifting e¤ect

is strong enough to overcome the lemons problem. In a similar line, Bond and Leitner (2015) consider an

interaction of the lemons problem with the leverage of the buyer of the lemon assets, whereas the seller�

leverage we consider. Their interest is on market freeze and liquidity dry, also di¤erent from ours. Lastly,

they are not concerned with the liquidity management, namely the satisfaction of liquidity needs in the

interim.4 On the other hand, Gomez and Vo (2020) examine the implications of banks� leverage for the

liquidity management, but are not concerned with the lemons problem.

In this paper, the bank lends out its liability � a promise to pay � to entrepreneurs who then use it

as a means of wage payment to hire workers and these workers thus hold the bank�s liability. This way of

modelling bank lending in a general-equilibrium framework is revived by a recent strand of literature; see

among others Bianchi and Bigio (2017), Donaldson et al (2018), Jakab and Kumhof (2015), Mendizábal

(forthcoming), Morrison and Wang (2018), and Wang (2019, 2021). In particular, Morrison and Wang

(2018) examine the e¤ect of banks�liquidity stock on their lending behaviour in a setting where depositors

withdraw only when they are worried about the default risks of their banks. They �nd that the e¤ect is

nil if depositors have homogeneous information on the asset quality of the banks; and is always positive if

they have heterogeneous information. In this paper, by contrast, depositor can also withdraw out of reasons

unrelated to the bank�s default risk, and the liquidity stock has a non-monotonic, discontinuous e¤ect on

3While these studies, including the present one, hinge on the e¤ect of the lemons problem on trading, Kurlat (2018) studies

the e¤ects of trading on the dynamics of the lemons problem.
4Similarly, Bigio (2015), Eisfeldt (2004) and Kurlat (2013) consider the dynamics of the lemons problem, but are not

concerned with banks�liquidity management.
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the bank�s lending behaviour. Bianchi and Bigio (2017) and Wang (2021) examine the implication of banks�

liquidity management for monetary policy in models where liquidity borrowing is not beset by the lemons

problem.

2 The Model

The economy lasts for three dates: t 2 f0; 1; 2g : It is populated by four types of risk-neutral agents: one

bank, a continuum [0; 1] of entrepreneurs, a lot more workers, and a large number N of investors. In a

nutshell, entrepreneurs borrow the bank�s demandable liability as a means of payment to hire workers at

t = 0; the bank faces liquidity demand at t = 1; to meet which it might need obtain liquidity supplied by

the investors; and contractual obligations are settled at t = 2: There is one consumption good, corn, which

is storable. Corn also represents the liquid asset in the model economy. At date 0, the bank is endowed with

G units of corn, the investors each with one unit.

At date 0, workers work either for entrepreneurs or in autarky. In autarky, a worker produce one unit of

corn at date 2. If an entrepreneur employs L workers, then she produces the following quantity of corn at

date 2:

y = eAK1��L�;

where K is the quantity of her own capital, � 2 (0; 1) and eA represents the productivity shock that realises
at date 2 and has the following distribution at date 0.

eA =
8><>:A, with probability eq;
A, with probability 1� eq; (1)

where 0 < A < A and eq is the common quality shock. At date 0,
eq =

8><>:qL, with probability p > 0;

qH , with probability 1� p > 0,
(2)

where 0 < qL < qH < 1: The shock eq realises at date 1. Its mean value is denoted by
qe := pqL + (1� p) qH :

Without loss of generality, we normalizeK = 1:We assume that there are more workers than can be employed

by entrepreneurs. As a result, an entrepreneur can hire workers by paying them with what they would earn

in autarky, that is, one unit of corn.

Entrepreneurs have no corn at date 0. They would want to hire workers by promising to pay them at date

2 with the corn produced then. However, we assume that entrepreneurs have inadequate commitment power
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so that their promise to pay is not trusted by workers. By contrast, the bank have adequate commitment

power so that workers accept its promise to pay as a means of wage payment. Put di¤erently, the following

is assumed.

Assumption 1: At date 0, workers supply labour in exchange for the bank�s promise to pay, but not for

entrepreneurs�.

This assumption captures the observation that in reality, banks�liabilities such as demand deposits are

widely accepted as a means of payment, whereas non-banks�are not. With the assumption, the bank�s role

at t = 0 is to lend its liability to entrepreneurs who use it as a means of wage payment to obtain labour

from workers. Eventually, entrepreneurs owe a debt to the bank, the bank to the workers. This is equivalent

to the arrangement in which workers "deposit" their labour with the bank and the bank then lends it out

to entrepreneurs, if this arrangement is imaginable. In this arragement, the intermedation of the bank is

necessary for entrepreneurs to obtain labour from the workers, again, because of Assumption 1.

As a result of Assumption 1, at date 0 entrepreneurs need borrow the bank�s promise to pay in order to

hire workers. A liability contract is represented by (r1; r2), by which the bank promises to pay r1 at date 1

or r2 at date 2 and the contract bearer decides which date to demand the payment. We de�ne one unit of

bank liability as one contract (r1; r2) with which an entrepreneur hires one work. The market value of one

unit of bank liability is thus equal to the wage per worker, namely, one unit of corn.

Equivalently, the lending of the bank�s liability is conducted via textbook loan-deposit-loan cycles: First

entrepreneurs borrow corn from the bank to hire workers (who certainly accept corn as their wage payment),

using one unit of corn to hire one worker; the workers deposit the corn that they receive as the wage payment

with the bank, and the deposit contract is (r1; r2) for one unit of corn; and the bank lends corn out again.

With this interpretation, (r1; r2) is a deposit contract, and the contract bearers are depositors; and one unit

of the deposit contract is used by the bank to exchange one worker�s wage, that is, one unit of corn.

Demanding payment at date 1, therefore, amounts to early withdrawal. We assume that deposit contract

that workers accept as a means of wage payment is fully demandable, that is, it entitles the depositor to

withdraw its full value at date 1. This assumption is justi�ed by the observation that in reality the most

common form of bank liability that is widely used as a means of payment is demand deposit, which entitles

the depositor to fully withdraw his claim on demand.5 By this assumption, one unit of bank liability gives

the depositor rights to withdraw one unit corn at date 1 and is thus represented by (1; r2) : This r2 is the

gross deposit rate between dates 1 and 2.

5 In this paper, we do not derive demandability as a part of equilibrium; for studies that derive it, see Diamond and Dybvig

(1983) and Morrison and Wang (2019).
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The relationship between the bank and an entrepreneur is governed by lending contract (D;R), by which

the entrepreneur acquires D units of bank liability at date 0 and is obligated to pay the bank DR units of

corn at date 2; thus R is the gross lending rate. We de�ne one unit of loan as a loan of unit face value. Then,

by entering DR units of loans, an entrepreneur acquires D units of liability, whereby she hires D workers

and produces eAD� units of corn at date 2. The decision problem of entrepreneurs at date 0 is as follows.

max
D
qe
�
AD� �DR

�
+ (1� qe)max (AD� �DR; 0) ; (3)

where the "max" term takes care of the possibility of entrepreneurs default in the bad state.

We assume the following inequality holds:

A

A�
<

qe
1� � (1� qe)

: (4)

As a result,
A

A�
< 1

because qe= (1� � (1� qe)) < qe= (1� (1� qe)) = 1: Condition (4) means that the bad-state productivity A

is low enough, hence the following lemma.

Lemma 1 At the optimum, entrepreneurs default in the bad state and repays each unit of loan with A

A�
unit

of corn. At date 0, their demand of bank liability depends on the lending rate R as follows:

D =

�
A�

R

� 1
1��

:= D (R) : (5)

Proof. See Appendix A.

According to Lemma 1, one unit of loan receives a repayment of one unit of corn in the good state and

A=
�
A�
�
unit in the bad state. If the good state occurs with probability eq; the ex ante value of a unit of

loan is

� (eq) = eq � 1 + (1� eq) A
A�

; (6)

and the market value of any loan is equal to the product of its face value and the discount factor � (eq) : The
probability eq measures the quality of the loans. If eq = qL; loans are of low quality, discounted by

�L := � (qL) :

If eq = qH ; they are of high quality, discounted by
�H := � (qH) :

We let

�e := p�L + (1� p) �H = � (qe) : (7)
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At date 1, depositors might exercise their withdrawal right for a variety of reasons. First, a fraction ! < 1

of depositors withdraw their claims for reasons unknown to the bank. This type of withdrawal is referred to

as the noisy withdrawal. Second, depositors will also withdraw at date 1 if they calculate that it is worse o¤

for them to hold the deposit contract to date 2 than to withdraw immediately. This type of withdrawal is

referred to as the rational withdrawal. The di¤erence between these two types of withdrawal is that while

the bank can prevent the rational withdrawal by setting a high enough deposit rate r2; the noisy withdrawal

is beyond the its control and engenders a rigid liquidity demand. If the bank fails to meet all the withdrawal

demands, a liquidity crisis occurs. We assume that the liquidity crisis is very costly to the bank. Hence, the

bank makes sure that it meets all the withdrawal demands at date 1.

To meet the withdrawal demands, the bank a stock of G units of corn. In addition, it can also exchange

loans for corn from investors. Following Bigio (2015), we allow two interpretations for this exchange: direct

sale or collateralised borrowing. Let � be the quantity of liquidity that it obtains in exchange of one unit of

loans, or equivalently, � is the discount factor that investors apply in evaluating the loans. We assume that

at date 1, no one but the bank observes the quality of the loans represented by the realisation of eq. If eq = qL
that is, if the bank �nds its loans are lemons, it might want to dump them to investors. Hence, the liquidity

borrowing of the bank is beset by the typical lemons problem. Following the literature on this problem (e.g.

Bolton et al 2011 and Malherbe 2014), we assume that the investors do not observe the total quantity X of

liquidity that the bank is obtaining, because this quantity signals the dumping of lemons. Speci�cally, we

assume that if the bank wants to obtain X units of corn, then it randomly contact X out of N investors, to

obtain one unit of liquidity from each. A given investor is thus contacted with probability X=N: An investor

observes whether he has been contacted by the bank or not, but has no idea of how many other investors the

bank is contacting or will contact. Therefore, if investors believe that the bank borrows XH units of corn if

it observes eq = qH and XL if eq = qL; then conditional on being contacted, they believe that the loans are
lemons with the following probability:

pXL

N

pXL

N + (1� p) XH

N

=
pXL

pXL + (1� p)XH
:

Then the investors use the following discount factor to evaluate the loans:

� =
pXL

pXL + (1� p)XH
�L +

(1� p)XH
pXL + (1� p)XH

�H : (8)

A smaller discount factor � represents a high cost for the bank to obtain external liquidity.

If the bank has lent out D units of liability at date 0, at date 1, then the size of noisy withdrawals is !D.

Given its liquidity stock G, to avoid the liquidity crisis, the quantity X of external liquidity to be obtained

must satisfy X � X; where

X := max (!D �G; 0) : (9)
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Thus X represents the genuine liquidity need that the bank has to use external liquidity to satisfy. Given

that the bank has DR units of loans, the maximum quantity of liquidity that it can obtain is

X := DR�: (10)

This X also represents the maximum scale of lemon dumping. The bank will not put itself in a situation

where it will de�nitely fail to meet the liquidity demand, that is, the following condition holds in equilibrium:

X � X: (11)

Following Heider et al (2015) and Parlour and Plantin (2008), we assume that the bank is not a Stackelberg

leader to investors; that is, it cannot use its date-0 actions (D;R; r2) to in�uence investors�decision on the

discount factor � at date 1. What matters for this decision is
�
X;X

	
because, as we will show, fXL; XHg ��

X;X
	
: Therefore, we assume that at date 1, investors observe neither X nor X: The bank�s depositors �

i.e. workers who accept contract (1; r2) as the means of wage payment �certainly observe the deposit rate r2

at date 0. We assume that they also observe (D;R) at date 1 when they decide on the rational withdrawal.6

The time line of the model is as follows.

Date 0.

1. The bank, endowed with G units of corn, decides the lending rate R and deposit rate r2:

2. Entrepreneurs each borrow D units of the bank�s liability contract (1; r2).

3. Entrepreneurs use the bank liability to hire D workers each and start production. Workers un-hired

work in autarky.

Date 1.

1. The bank, but no one else, observes the realisation of eq. Depositors observe (D;R; r2).
2. A fraction ! of depositors makes the noisy withdrawal; other depositors may opt for the rational

withdrawal.
6The di¤erence in date-1 information between depositors and investors is meant to represent the following facts. In reality,

when an investor is contacted by a bank to buy an asset (or accept it as the collateral for lending liquidity), he will examine

the asset and �nd a bundle of attributes that are informative of its quality; let us refer to these attributes as the category.

In the presence of the lemons problem, he will calculate what is the chance that the bank has a genuine liquidity need and

happens to pick this category of assets for sale; and what is the chance that the bank knows these assets are lemons and wants

to dump them. The former chance is proportional to the quantity X of the liquidity need that the bank decides to meet by

selling the category of assets, the latter to their total market value X. The investor observing X or X amounts to him observing

the detailed categorisation of the bank�s balance sheet, which, in practice, is unlikely. By contrast, what concerns the rational

withdrawal by depositors is the aggregate-level information, which is more readily available.
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3. The bank obtains X units of the external liquidity from investors by selling the loans (or with col-

lateralized borrowing). Investors observe neither X; nor
�
X;X

	
: They discount the loans with the

discount factor �:

Date 2.

1. The entrepreneurs produce corn. They repay min
� eAD�; DR

�
units of corn to the bank to settle the

loans. The bank redeems each unit of the outstanding deposits with a payment of r2 whenever it can.

If it cannot, it defaults and its asset is distributed pro rata to the depositors.

2. The economic agents derive utility from the corn that they have obtained.

The bank has monopolistic power over entrepreneurs and will earn a positive value ex ante. Hence, it

will not choose such a course of action that it defaults in both states. Bank default could happen only in

the bad state.

De�nition 1 Equilibrium of the model is a pro�le of fD;R; r2; XL; XH ; �g that satis�es the following con-

ditions.

1. Given the gross lending rate R, entrepreneurs�demand for deposits is D = D (R) given by (5).

2. Given the discount factor � used by investors and (D;R; r2) chosen at date 0, the bank borrows XH

units of corn if it observes eq = qH and XL units if it observes eq = qL at date 1.
3. Depositors make rational withdrawal if and only if the value of holding contract (1; r2) to date 2 is

smaller than 1.

4. Given the discount factor �, the demand function D (R) and depositors�decision on the rational with-

drawal, the bank makes the optimal decision on (R; r2) at date 0.

5. The discount factor � is determined by (XL; XH) via (8) whenever (XL; XH) 6= (0; 0).

We will examine the impact of the bank�s liquidity stock G for its lending rate R in equilibrium. This

impact, as will be shown, is channelled by the cost of the external liquidity, which the bank might need

to meet its liquidity demand. As shown by Morrison and Wang (2019), the rational withdrawal can be

costlessly prevented with a proper deposit rate r2 alone and needs no liquidity to meet. Therefore, if there

is no noisy withdrawal, the liquidity stock bears no impact on the bank�s lending rate, as we show in the

following benchmark case.
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3 The Benchmark: No Noisy Withdrawal

Assume in this section that ! = 0 so that the bank faces no noisy withdrawal. As a result, by (9), the

genuine liquidity need of the bank X = 0 for any D: Later in the next section we will show that in this

scenario, the bank does not to borrow: XH = XL = 0; for the time being, we assume no borrowing by the

bank at date 1 and focus on showing how the bank uses deposit rate r2 to prevent the rational withdrawal

costlessly.

At date 1, if the holder of one unit of deposit withdraws his claim, he obtains one unit of corn. If he holds

the deposit to date 2, he will obtain r2 in the good state. In the bad state, given no liquidity borrowing by

the bank, the asset value of the bank is DR � A=
�
A�
�
+ G by Lemma 1. It has D units of outstanding

deposit if the rational withdrawal is prevented. Hence the payment to each unit of deposit in the bad state,

denoted by r2; is equal to the following.

r2 = min

 
r2;
DR�A=

�
A�
�
+G

D

!
:

At date 1, depositors believe that the good state happens with probability qe: Hence, the value of holding a

unit of deposit to date 2, denoted by uh; is as follows.

uh (r2) = qer2 + (1� qe) r2:

The bank prevents the rational withdrawal at date 1 by o¤ering a deposit rate r2 that satis�es the following

liquidity constraint:

uh (r2) � 1: (12)

At date 0, if the rational withdrawal is prevented, the unit value of deposit is ! � 1 + (1� !)� uh (r2) ;

which is hence the cost to the bank of issuing one unit of deposit. If the bank charges lending rate R; it

lends out D = D (R) units of deposits to entrepreneurs, who accordingly enter D (R)R units of loans, each

unit of which is of market value �e at date 0. The bank�s problem at date 0 is hence as follows.

max
R;r2

D (R) (R�e � [! + (1� !)uh (r2)]) ; s:t: (12) : (13)

At the optimum, the liquidity constraint (12) binds: The optimal deposit rate r2 satis�es uh (r2) = 1. As a

result, at date 0 one unit of deposit is worth 1 and depositors break even. Hence the bank incurs no extra

cost in using deposit rate r2 to prevent the rational withdrawal. The optimal lending rate RNW (here "NW"

stands for "No Withdrawal") is:

RNW =
1

�
� 1

�e
: (14)

To understand this equation, let us de�ne the marginal lending cost as the value of the lending rate R

at which the marginal pro�t of lending is 0. By (13), the marginal lending pro�t is equal to R�e � 1: Hence,
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the marginal lending cost in the benchmark case

cNW =
1

�e
: (15)

The optimal lending rate is thus equal to the marginal cost of lending multiplied by the mark up factor 1=�;

which presents itself because the bank has monopolistic power over the borrowers. Observe that the bank�s

lending rate RNW in the benchmark case is independent of its liquidity stock G. Hence,

Proposition 1 If ! = 0 and there is no noisy withdrawal, then the equilibrium lending rate RNW = 1= (��e)

and is una¤ected by the bank�s liquidity stock G.

We have found that if the noisy withdrawal probability ! = 0, then the bank�s liquidity stock G bears

no impact on the lending rate. In what follows, we assume the noisy withdraw is substantial:

! � 1� A

A�
; (16)

and show that in this case the liquidity stock has a non-monotonic and discontinuous relationship with the

lending rate. To a large extent, this relationship is driven by the double identity of liquid assets, namely the

fact that they are both liquid assets and safe assets.

To characterize the equilibrium, we �rst examine the decision problems of di¤erent parties separately,

and then the meeting of these decisions in equilibrium. For the former task, we use backward induction.

Given that at date 2 no decision is made, only contracts settled, we start with date 1 decisions and then

move back to date-0 decisions.

4 Date-1 Decisions

At date 1, given (D;R; r2) that has been determined at date 0 and the investors� discount factor �; the

bank decides the quantity XH or XL of the external liquidity to borrow from investors conditional on the

realisation of eq. Depositors, based on their observation of (D;R; r2) and their belief of �; decide whether to
make the rational withdrawal. Finally, investors, based on their rational expectation of (D;R; r2) ; decide

the discount factor �: We analyse these three decisions in order.

4.1 The liquidity borrowing by the bank

If the bank decides to borrow X 2
�
X;X

�
units of liquidity (i.e. corn), it surrenders X=� units of loans as

the collateral, hence retaining DR � X=� units of loans on its balance sheet. Then it has X + G units of
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corn, out of which !D is used to meet the demand of the noisy withdrawal; the rational withdrawal, as was

shown in the benchmark case above, is prevented by the bank using a proper depositor rate r2. At date 2,

if the state is good, the loans perform, each unit of which returns 1 unit of corn. Hence, the asset value is

DR�X=� +X +G� !D: The bank pays r2 to redeem each of (1� !)D units of the outstanding liability

in full. Hence, the bank�s value is

VG (X) = DR�
X

�
+X +G� !D � (1� !)Dr2; (17)

and a unit of deposit is repaid with r2; it is convenient to �nd the unit repayment to deposit here so that later

we can readily write the liquidity constraint about the deposit rate r2 for stopping the rational withdrawal.

In the bad state, the loans do not perform, each unit of which returns A=
�
A�
�
< 1: If the bank pays deposits

in full, then its value is

eVB (X) = �DR� X
�

�
A

A�
+X +G� !D � (1� !)Dr2: (18)

If eVB (X) < 0; the bank defaults and its value is zero. Thus, the bank�s value is max�eVB (X) ; 0� and the
repayment to a unit deposit is a function of X as follows.

r2 (X) = min

 
r2;

�
DR� X

�

� A

A�
+X +G� !D

(1� !)D

!
(19)

= r2 +min

 
0;

eVB (X)
(1� !)D

!
: (20)

If the bank defaults and eVB (X) < 0; then by equation (20), �eVB (X) = [(1� !)D] is the shortfall in the
deposit repayment r2; or the loss borne by a unit deposit in the bad state. At date 1, conditional on the

realisation of eq; the bank�s decision on the quantity of the external liquidity X to obtain is as follows.

max
X2[X;X]

h
V (X) := eqVG (X) + (1� eq)max�eVB (X) ; 0�i : (21)

It follows that

V 0 (X) =

8<: �� (eq) =� + 1 if eVB (X) > 0eq (�1=� + 1) < 0 if eVB (X) < 0
9=; : (22)

Behind equation (22) stand two e¤ects. First is the asset-value e¤ect. The true value of a unit of loan

is � (eq) ; but investors believe it is worth �: Given � 2 [�L; �H ] ; investors undervalue bank loans if eq = qH

and over-value them while if eq = qL. Thus, giving up 1=� units of loans for one unit of liquidity changes

the bank�s asset value by �� (eq) =� + 1: If the bank never defaults (i.e. eVB (X) > 0), then this change is all
accrued to the bank (namely, the equity): V 0 (X) = �� (eq) =� + 1. However, if eVB (X) < 0 and the bank

defaults in the bad state, the second e¤ect enters the stage. Note that loans are an risky asset and the
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liquid asset � i.e. corn � is risk free. Therefore, an exchange of loans for liquidity swaps the risky assets

with the risk free one and amounts to inverse risk-shifting. That, following the seminal work of Jensen and

Meckling (1976), increases the value of the debt and decreases the value of the equity when the debt is risky:

V 0 (X) < 0 if eVB (X) < 0 according to (22). The equity�s loss due to inverse risk-shifting is the �ip side of its
gain due to risk-shifting. Hence, if the loss �eVB (X) = [(1� !)D] borne by deposits is larger, as the bank�s
gain from risk-shifting becomes greater, so does its loss from inverse risk-shifting.

The inverse risk-shifting e¤ect pushes bank to choose a smaller X, always. So does the asset value e¤ect

if eq = qH . Hence the following lemma.
Lemma 2 XH = X; that is, if the loan quality is high, the bank borrows exactly what is needed to meet its

liquidity demand.

Proof. If eq = qH ; V 0 (X) < 0 by (22). Hence XH hits the lower bound, i.e. XH = X:

The following corollary of this lemma is used to in the benchmark case.

Corollary 2 If X = 0 for any D, then XH = XL = 0.

Proof. If X = 0 for any D; then investors know that XH = 0. Then by (8), � = �L: It follows from (22)

that V 0 (X) � 0 if eq = qL: Hence, XL = 0:
The proof of the corollary also shows that if � = �L; then

XH = XL = X:

We now consider the case in which � > �L: In this case, if eq = qL investors strictly over-price bank loans
and the asset-value e¤ect drives the bank to dump all the lemons �namely low-quality loans �to investors

and choose XL = X: However, the inverse risk-shifting e¤ect still drives the bank to borrow the minimum:

XL = X: The choice of X depends on the balance between these two e¤ects. The latter e¤ect is stronger,

we just observed, if the bad-state loss borne by deposits is greater. The liquidity stock G; as the safe asset,

absorbs loss for deposits. The greater the safe asset G; the smaller the loss borne by deposits and the weaker

the inverse risk-shifting e¤ect. A greater G; therefore, tilts the balance to the lemon dumping end: XL = X:

This intuition is con�rmed by Lemma 3 below.

Lemma 3 If � > �L, then

XL =

8>>><>>>:
X if G > 
D�

X;X
	
if G = 
D

X if G < 
D

9>>>=>>>; ; (23)
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where


 = 
 (R; r2; �) := ! �
�
R� (1� qL) (1� !)

� � qL
r2

�
�: (24)

Moreover, @
=@R < 0; @
=@� < 0 and 
 < !: Lastly, if XL = X; then eVB (XL) > 0; and if XL = X theneVB (XL) < 0:
Proof. See Appendix A.

By this lemma, if � > �L; the bank�s liquidity acquiring in the contingency of eq = qL falls into two regimes.
In Regime A, the bank chooses XL = X abstaining from lemon dumping. This regime rules if the D > G=
;

that is, the bank�s lending scale D is large enough relative to its safe asset G: Under this condition, the loss

borne by the deposits is large enough so that the inverse risk-shifting e¤ect is strong enough to overcome the

lemons problem. Hence, the bank borrows the minimum necessary quantity of the external liquidity wheneq = qL; as it does when eq = qH : In Regime B, the bank dumps lemons and borrows X: This regime rules

if the lending scale D < G=
 and hence the inverse risk-shifting e¤ect is too weak to overcome the lemons

problem. Observe that in determining the regime choice by the bank, the corn stock G works in the identity

of the safe asset.

Variable 
 represents the quantity of the corn stock per unit of lending at which the loss due to the inverse

risk-shifting is exactly balanced with the gain from dumping lemons. Note that @
=@R < 0. Intuitively, if

the gross lending rate R rises, each unit of lending generates more units of loans and thus entails a greater

bene�t from dumping them when they are lemons. To balance that, the inverse risk shifting e¤ect needs to

be stronger, namely, the bad-state loss borne by deposits needs to be higher. Therefore, the safe asset 
 that

cushions each unit of deposits need be smaller.

4.2 The rational withdrawal by depositors

We have found that at date 2, a unit deposit pays o¤ r2 in the good state and r2 in the bad state which

depends on the bank�s borrowing scale X via (19). Now we consider depositors�decision on the rational

withdrawal. At date 1, depositors observe (D;R; r2) and form a rational belief of �; whereby they deduce

(XH ; XL). With probability p; the quality shock eq = qL realises and the bank borrows XL units of the

external liquidity. With probability 1� p, the scale is XH = X: Holding one unit of deposit to date 2 thus

delivers the following payo¤:

uh (r2) = p
�
qLr2 + (1� qL) r2 (XL)

�
+ (1� p)

�
qHr2 + (1� qH) r2 (X)

�
= qer2 + p (1� qL) r2 (XL) + (1� p) (1� qH) r2 (X) : (25)
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Withdrawal at date 1 delivers 1 unit of corn. The rational withdrawal is prevented if and only if the deposit

rate r2 satis�es that following liquidity constraint:

uh (r2) � 1: (26)

Obviously, uh (r2) increases with r2: Hence, the above liquidity constraint is satis�ed if and only if r2 � r�2 ;

where threshold r�2 makes the constraint bind:

uh (r
�
2) = 1: (27)

As the value uh (r2) of holding deposits to date 2 depends on the borrowing scale X; so does the threshold

r�2 : From the preceding subsection, we know XL = X in Regime A and XL = X in Regime B. Hence, the

thresholds r� in the two regimes are di¤erent. Moreover, the former is the case if � = �L or G � 
 (R; r2; �)D,

the latter if � > �L and G � 
 (R; r2; �)D: Hence the following lemma.

Lemma 4 There exist two threshold functions rA (R; �;G) and rB (R; �;G) such that depositors make no

rational withdrawal if r2 � rA when they expect XL = X and if r2 � rB when they expect XL = X. That is,

r�2 =

8<: rA (R; �;G) if � = �L or G � 
 (R; r2; �)D (R)

rB (R; �;G) if � > �L and G � 
 (R; r2; �)D (R)

9=; : (28)

Both rA (R; �;G) and rB (R; �;G) decrease with (R; �;G) : Lastly rA (R; �;G) > rB (R; �;G).

Proof. See Appendix A.

Both thresholds rA and rB decrease with (R; �;G) because the unit deposit payo¤ r in the contingency

of bank default increases with (R; �;G) ; for the following intuitive reasons. If the lending rate R is higher,

the bad-state return A=
�
A�
�
� R of lending per unit of deposits is higher and thus so is the unit deposit

repayment r: Similarly, the larger the liquidity stock G, the greater the loss absorbed by the safe asset in the

bad state and the higher the unit deposit repayment r. Lastly, the bigger the discount factor �, the higher

the value of the bank�s asset and the higher is r.

The bank exchanges less loans for liquidity in Regime A than in Regime B. Due to the inverse risk-shifting

e¤ect, given r2; the value of holding deposits in Regime A is lower than in Regime B. As a result, to stop the

rational withdrawal, the deposit rate r2 needs to be higher in Regime A than in Regime B. Hence, rA > rB :

In the knife-edge scenario where � > �L and G = 
 (R; r2; �)D; by Lemma 3, the bank could play a mixed

strategy with XL; in which case the threshold r�2 is somewhere between r
A and rB : However, in this paper,

we con�ne our attention to the case where in equilibrium the bank plays no mixed strategy.
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4.3 The discount factor used by investors

At date 1, based on their rational expectation of (D;R; r2) chosen at date 0 and their observation of G,

investors decide the discount factor � that they use to evaluate the loans that the bank o¤ers. For this

purpose, they deduce (XH ; XL) and then �nd � using equation (8) whenever (XH ; XL) 6= (0; 0). Their �nding

is given by Proposition 3 below, to state which it is convenient to state the following lemma beforehand.

Lemma 5 Equation (29) below has a unique solution for � within interval (�L; �e) ; denoted by �B :

� � �L
�H � �

=
1� p
p

�
1� (1� qL) (1� !)

� � qL
r2
R

�
: (29)

Moreover, �B
0 � r2

R

�
< 0:

Proof. See Appendix A.

In Proposition 3 below, we suppress arguments (R; r2) of function 
 (R; r2; �) de�ned by (24). The

proposition uses the fact that @
=@� < 0 and 
 < ! as given in Lemma 3.

Proposition 3 Given investors� rational expectation of (D;R; r2) ; the discount factor � that they use to

evaluate loans at date 1 is a continuous function of the liquidity stock G, as follows.

� =

8>>>>>><>>>>>>:

�e if G � 
 (�e)D

�M if G 2
�

 (�e)D; 


�
�B
�
D
�

�B if G 2
�


�
�B
�
D;!D

�
�L if G � !D

9>>>>>>=>>>>>>;
; (30)

where �M is the unique root of


 (�)D = G;

and �B is a unique root of
� � �L
�H � �

� =
1� p
p

!D �G
DR

; (31)

and at G = 
 (�)D; equation (31) is reduced to (29) and hence �B = �B. Moreover � decreases G.

Proof. See Appendix A.

The �rst branch of equation (30) represents that case where the bank is in Regime A and contacts an

investor with an equal probability in the contingency of eq = qL as in that of eq = qH (namely XL = XH):

Therefore, � = �e as if the lemons�problem were absent. By Lemma 3, Regime A rules if G < 
 (�)D; which,

with � = �e; is equivalent to G < 
 (�e)D: On the other hand, the third branch of equation (30) represents
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that case where the bank is in Regime B and thus XL = X: Substituting this and XH = X = !D �G into

equation (8) �nds equation (31). With the endogeneity of � and Lemma 3, this is the case if G > 

�
�B
�
D:

Between these two cases, there is a gap of G, namely,
�

 (�e)D; 


�
�B
�
D
�
:7 When G ascends through this

gap, the probability of the bank playing XL = X rises from 0 to 1, so that the case of Regime A smoothly

transitions into that of Regime B. In this transition case, represented by the second branch of equation (30),

the bank plays a mixed strategy with XL; which demands G = 
 (�)D; that is, � = �M : Lastly, the fourth

branch of equation (30) represents the case where X = max (!D �G; 0) = 0: In this case investors believe

that the bank needs no external liquidity to meet its liquidity demand. They interpret any of its o¤ers to

exchange loans for liquidity as an attempt to dumping lemons and set � = �L: Observe that while given

(D;R; r2) ; there is always an interval of G within which the bank plays a mixed strategy with XL: However,

in equilibrium, where the dependence of (D;R; r2) on G is taken into account, in no interval of G is a mixed

strategy played in the case that interests us.

Overall, by Proposition 3 � decreases with G; as illustrated in the following �gure.

Figure 1: Given (D;R; r2) ; the discount factor � continuously decreases with the liquidity stock G: If

G � 
 (�e)D; the bank is in Regime A where the inverse risk-shifting e¤ect overcomes the lemons problem.

If G � 

�
�B
�
D; the bank is in Regime B where it dumps lemons. In between is the case where the bank

plays a mixed strategy with XL.

In the decreasing relationship of � with G; the corn stock G is in both identities of the safe asset and the

liquid asset. First, we have seen above that it is in identity of the safe asset that G determines the borrowing

regime of the bank. Second, in the decreasing relationship of � with G in Regime B, the corn stock works

as the liquid asset. In this regime, the bank dumps lemons when eq = qL; but when eq = qH ; it borrows

the quantity of liquidity just su¢ cient to meet its needs. The larger is its own liquid stock G; the less the

external liquidity needed. Consequently, when an investor is contacted by the bank, the less likely is this

contact made because of the liquidity needs, the more likely is it out of the lemon-dumping purpose and the

lower the discount factor �B .

7Observe that by Lemma 5 �e > �B and hence 
 (�e) < 

�
�B

�
D:
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5 Date-0 Decisions

At date 0, the demand of bank deposits by entrepreneurs is D = D (R) given in Lemma 1. A unit-deposit

bearer expects to withdraw one unit of corn (for reasons unknown to the bank) with probability ! and holds

the deposit on to date 2 with probability 1� !: Ex ante a unit of deposit is worth u0 = ! � 1 + (1� !)uh.

u0 � 1 because of the date-1 liquidity constraint uh � 1: Therefore, workers do not hesitate accepting a unit

of deposit as the wage payment at date 0. Only the bank�s decision on (R; r2) awaits to be examined. In

making these decisions, it takes as given the discount factor � that investors will use at date 1. By Proposition

3, � 2 [�L; �e] :

The bank�s optimal choice of the deposit rate r2 can be easily characterized. To stop depositors from

making the rational withdraw, r2 � r�2 ; where r�2 is a function of (R; �;G) given by (28). At the optimum,

r2 = r
�
2 (R; �;G) and the liquidity constraint binds, namely uh (r2) = 1: As a result, in equilibrium the value

of a unit of deposits u0 = 1: If the bank lends out D units of deposits at date 0, then its date-0 value is the

expected asset value V minus D.

The asset value V depends on the lending rate R as follows. At the lending rat R, the lending scale is

D = D (R). At date 1, conditional on the quality shock eq; the bank will exchange X (eq) =� units of loans for
X (eq) units of liquidity. Each unit of the remained DR�X (eq) =� units of loans returns 1 in the good state
and A=

�
A�
�
in the bad state at date 2. Hence, conditional on the quality shock eq; the expected asset value

is

eq�DR� X (eq)
�

+X (eq) +G�+ (1� eq)��DR� X (eq)
�

�
A

A�
+X (eq) +G�

=

�
DR� X (eq)

�

�
� (eq) +X (eq) +G:

At date 0, the expected asset value is

V = p

��
DR� XL

�

�
�L +XL +G

�
+ (1� p)

��
DR� XH

�

�
�H +XH +G

�
: (32)

While XH = X = max (!D �G; 0) always by Lemma 2, the value XL depends on the borrowing regime at

date 1. In Regime A, XL = X and the bank�s asset value is

V A =

�
DR� X

�

�
�e +X +G; (33)

and in Regime B, XL = X = DR� and the asset value is

V B = pDR� + (1� p)
��
DR� X

�

�
�H +X

�
+G: (34)

As V A and V B di¤ers only in the liquidity acquiring scale XL in the contingency of eq = qL: If � = �L;

the lemon loans are fair priced and this di¤erence produces no e¤ect to the bank�s asset value: V A = V B :
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Hence, in what follows, we focus on the case where � > �L: In this case, the bank chooses XL = X and is in

Regime A if 
D � G; and chose XL = X and is in Regime B if 
D � G: Considering that the D = D (R) is

negatively related to the lending rate R; we expect that Regime A is feasible if R is low enough, Regime B

the opposite. This intuition is con�rmed by the following lemma, where

R (G) := A�
�!
G

�1��
(35)

denote the inverse function of G = !D (R) ; that is, X = !D (R) � G > 0 if and only if its lending rate

R < R (G) :

Lemma 6 Given G and � > �L; there exists two thresholds RA (G; �) and RB (G; �) such that the bank can be

in Regime A if R � RA (G; �) and in Regime B if R � RB (G; �). Moreover, R (G) > RA (G; �) > RB (G; �) ;

where

Proof. See Appendix A.

By this lemma, if � > �L; for any R 2
�
RB ; RA

�
; both regimes are feasible. This result is driven by

an interaction between the bank�s liability level and its borrowing regime. By Lemma 4, rA > rB . Given

R 2
�
RB ; RA

�
, if the bank chooses r2 = rA (R; �;G) and o¤ers the higher deposit rate at date 0, then

other things equal, the bad-state shortfall in the deposit repayment is large. Consequently, the risk-shifting

e¤ect is strong enough to overcome the lemons problem, and the bank will indeed be in Regime A at date 1

and need the higher deposit rate rA to stop the rational withdrawal. If the bank chooses r2 = rB (R; �;G)

and o¤ers the lower deposit rate at date 0, then the risk-shifting e¤ect is too weak to overcome the lemons

problem. Consequently the bank will indeed be in Regime B at date 1 and r2 = rB su¢ ces to stop the

rational withdrawal. Between these two regimes, the bank picks the one that gives a higher asset value,

because the unit cost of liability is always 1 at date 0. That is Regime B, because the bank dumps lemons

in the regime and dumping lemons increases its asset value if � > �L:

Lemma 7 If � > �L; then V A < V B for R 2
�
RB ; RA

�
.

Proof. See Appendix A.

By Lemma 7, if � > �L; the bank�s asset value V = V B whenever Regime B is feasible, that is, R �

RB (G; �) : Hence, if � > �L;

V =

8<: V A if R < RB (G; �)

V B if R � RB (G; �)

9=; : (36)
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We have seen that V A = V B if � = �L: It follows that equation (36) holds true for all � 2 [�L; �e] :

At date 0, the bank�s value � = V � D: With V A given by (33) and V B by (18), the bank�s value �

depends on the lending rate R as follows:

�(R; �;G) =

8>>>>><>>>>>:
D (R)

�
�eR�

�
! �e��� + 1

��
+ �e

� G if R < R
B (G; �)

D(R)

�
(p�+(1�p)�H)R�

�
!
(1�p)(�H��)

� +1

��
+
�e+p(���L)

� G
if R 2 [RB (G; �) ; R (G)]

D (R) [(p� + (1� p) �H)R� 1] +G if R � R (G)

9>>>>>=>>>>>;
: (37)

In the benchmark case, we have de�ned the lending cost as the value of R at which the pro�t margin of lending

is equal to 0. Then, the three branches of equation (37) represent three lending scenarios, characterized by

di¤erent lending costs. First is Scenario A, where the lending rate is at the lower end �R < RB �and thus

the lending scale is large relative to G. The large scale lands the bank in Regime A, where it borrows X > 0

(because RB < R) units of liquidity independent of the realisation of eq: Each unit of loans is hence worth
�e: Lending out one unit of liability creates R units of loans and needs the service of ! unit of the external

liquidity, each unit of which changes the bank�s asset value by (�e � �) =�: In Scenario A, hence, the pro�t

marginal of lending is �eR� (1 + ! (�e � �) =�) and the marginal lending cost of lending is

cA =
1 + ! (�e � �) =�

�e
: (38)

Second is Scenario B1, where the lending rate R 2 [RB ; R] and is in a middle range. As a result, on the one

hand, the lending scale is small enough to get the bank in Regime B. On the other hand, it is big enough

that still X > 0 and the bank needs the external liquidity to meet its liquidity demand. At date 1, the

bank dumps all the loans if they are lemons. Hence, a unit of loan is worth �H when eq = qH and � wheneq = qL at date 1 and worth p� + (1� p) �H at date 0. Moreover, the bank needs to exchange loans for the

external liquidity in the contingency of eq = qH . Each unit of liquidity exchanged incurs a loss of (�H � �) =�
to the bank. The contingency of eq = qH occurs with probability 1� p. Altogether, in Scenario B1, the pro�t
margin of lending is (p� + (1� p) �H)R� (1 + (1� p)! (�H � �) =�) and the marginal cost of lending is

cB1 =
1 + (1� p)! (�H � �) =�

p� + (1� p) �H
: (39)

Third is Scenario B2, where the lending rate R > R and consequently X = 0 and the bank can self-satisfy its

liquidity demand. As in Scenario B1, the bank still dumps lemons and a unit of loan is worth p�+(1� p) �H .

Di¤erent to Scenario B2, the bank avoids the loss from borrowing liquidity in the contingency of eq = qH .

Therefore, in Scenario B2, the marginal cost of lending is

cB2 =
1

p� + (1� p) �H
: (40)

These three marginal costs are di¤erent, as shown by the lemma below.

21



Lemma 8 cA � cB1 > cB2 for any � 2 [�L; �e] and the equality holds if and only if � = �L:

Proof. See Appendix A.

It is obvious that cB1 > cB2. The reason for cA � cB1 is the same as that drives V B � V A: At date 0,

dumping more lemons helps the bank reduce the lending cost, unless � = �L: By this lemma, the marginal

cost change discontinuously across scenarios. As a result, the value function of the bank �(R) ; though

continuous everywhere, has a kink at the two boundaries between these three scenarios: R = RB (G; �) and

R = R (G).

The boundary R (G) = A� (!=G)
1�� is simple enough. The boundary RB (G; �) is the lending rate at

which the bank is indi¤erent between the two regimes at date 1 if it has chosen r2 = rB (R; �;G) ; that is,

RB (G; �) is implicitly de�ned by



�
R; rB (R; �;G) ; �

�
D (R) = G: (41)

Lemma 9 RB0G < 0 and RB0� < 0:

Proof. See Appendix A.

Intuitively, at the boundary rate RB ; the lending scale is at the level where the gain from lemon dumping

is exactly balanced with the loss from inverse risk-shifting. In the decreasing relationship of RB with G; the

corn stock G works in the identity of the safe asset. A larger safe asset G; given the lending scale, weakens

the inverse risk-shifting e¤ect, in order for which to balance the lemons problem, therefore, the lending scale

needs be raised, and the lending rate reduced. Hence, RB0G < 0: A higher discount fact �, similarly, increases

the gain from lemon dumping, to balance which, the inverse risk-shifting e¤ect needs get stronger. Therefore,

the lending scale needs be raised, and the lending rate RB reduced. Hence, RB0� < 0:

While function RB (G; �) cannot be explicitly spelt, its inverse function G = � (R; �) can, which is also

implicitly de�ned by equation (41). The key is that at R = RB (G; �) ; rB is independent of G; as shown in

the following lemma.

Lemma 10

rB
�
RB ; �; G

�
=

1

1� (1� p) (1� qH) ���L��qL
: (42)

The inverse function of RB (�; �) is

� (R; �) =

�
! �

�
R� (1� qL) (1� !)

(1� (1� p) (1� qH)) (� � �L) + �L � qL

�
�

�
D (R) : (43)

Moreover, � (R; �) < !D (R) for any R > 1; and �0R < 0 and �
0
� < 0.
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Proof. See Appendix A.

Given the discounter factor � and the liquidity stock G; the bank�s decision problem at date 0 is therefore:

max
R
�(R; �;G) : (44)

Its solution is given in the following proposition where we use the fact that �
�
1
�cA; �

�
� �

�
1
�cB1; �

�
; which

holds because �0R < 0 and cA � cB1 by Lemma 8.

Proposition 4 Given (�;G) ; the optimal lending rate R� that the bank charges at date 0 is as follows.

R� =

8>>>>>>>>><>>>>>>>>>:

1
�cA (�) if G < �

�
1
�cA (�) ; �

�
RB (G; �) if G 2

�
�
�
1
�cA (�) ; �

�
;�
�
1
�cB1 (�) ; �

��
1
�cB1 (�) if G 2

�
�
�
1
�cB1 (�) ; �

�
; !D

�
1
�cB1 (�)

��
R (G) if G 2

�
!D

�
1
�cB1 (�)

�
; !D

�
1
�cB2 (�)

��
1
�cB2 (�) if G � !D

�
1
�cB2 (�)

�
:

9>>>>>>>>>=>>>>>>>>>;
; (45)

where cA; cB1; and cB2 are respectively given by (38), (39) and (40).

Proof. See Appendix A.

The �ve branches of equation (45) represents �ve phases of the optimal lending rate R�. They are related

to the three scenarios described above. With the corn stock G rising, due to its double identity, the inverse

risk-shifting e¤ect becomes weaker and the liquidity stock larger. Hence, bank lending naturally proceeds

from Scenario A (where the inverse risk-shifting e¤ect is strong enough to overcome the lemons problem), to

Scenario B1 (where the lemons problem bites), and lastly to Scenario B2 (where the liquidity demand can

be self-satis�ed). These are respectively corresponding Phases 1, 3 and 5, where the optimal lending rate is

equal to the marginal lending cost in the scenario, cA; cB1 and cB2; marked up with the factor 1=�. Phases

2 and 4 are the boundary cases, where R� is equal to the respective boundary rate RB (G; �) and R (G) : The

boundary phase exists for an interval of G rather than a point of it because the lending cost changes abruptly

across the scenarios. When G ascends through these two intervals, �R� smoothly decreases, respectively,

from cA to cB1; and from cB1 to cB2:

For a � > �L; Proposition 4 is illustrated as follows.
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Figure 2: Given � > �L, the optimal lending rate R� continuously decreases with the liquidity stock G: In

Phases 1, 3 and 5, the bank is inside Scenarios A, B1 and B2 and R� is equal to the marginal lending cost

marked up by 1=�: The transition between the scenarios happens smoothly in Phases 2 and 4, where

R� = RB (G; �) and R� = R (G) respectively.

The monotonic and smooth relationship of R� with G depicted in Figure 2 exists only because the discount

factor � is taken as given in the bank�s decision problem. In equilibrium, when the e¤ect of G on �; as given

by equation (30) of Proposition 3, is taken into account, the relationship of the lending rate with the corn

stock G is no longer monotonic or continuous, as we will �nd in the next subsection.

6 Equilibrium

In equilibrium, each party makes the rational (i.e. correct) expectation of other parties�decision. In particu-

lar, the discount factor � used in the bank�s decision on R�; given in equation (45) of Proposition 4, satis�es

equation (30) of Proposition 3; and the pro�le (D;R; r2) used in investors�decision on �; given in equation

(30) of Proposition 3, is equal to (D (R�) ; R�; r�2). We are interested in how the equilibrium lending rate

Re depends on the liquidity stock G. Suggested by Proposition 4, the equilibrium can be in �ve phases,

depending on the range of G, with the range itself dependent on the equilibrium discount factor �e. In what

follows, for each of these �ve phases, we �nd the range of G within which an equilibrium in the phase exists,

and we characterize the equilibrium. Then, we put all the phases together and �nd how (Re; �e) depends on

the liquidity stock G in its full spectrum. Below for k 2 f1; 2; 3; 4; 5g ; we let �k and Rk denote respectively

the value of �e and Re in a Phase-k equilibrium.

Phase 1 : In this phase, the bank is in Regime A: G < 
D: By equation (30), �1 = �e; and by equation

(45), R1 = 1
�cA (�e) = 1= (��e). By Proposition 4, a Phase-1 equilibrium exists if G < �

�
1
�cA (�1) ; �1

�
;
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which, given �1 = �e; is equivalent to G < �
�
1
�cA (�e) ; �e

�
: Altogether, we have

Claim 1 If the liquidity stock G < �
�
1
�cA (�e) ; �e

�
; then there is a Phase-1 equilibrium, in which the bank

is in Regime A and (R1; �1) =
�

1
��e
; �e

�
independent of G.

Observe that because in Phase 1, the lemons problem is overcome by the inverse risk-shifting e¤ect, the

bank incurs no extra costs of borrowing liquidity and charges the same interest rate as in the case where no

borrowing is needed: R1 = RNW ; where RNW is the lending rate when ! = 0. The Phase-1 equilibrium is

illustrated as follows.

Figure 3: The Phase-1 Equilibrium, the lending rate Re (the solid line) and discount factor �e (the dashed

line) as a function of the liquidity stock G. In this equilibrium, the inverse risk-shifting e¤ect overcomes the

lemons problem.

Phase 2 : In this phase, the bank is at the boundary of Regime B: G = 
D and R2 = RB (G; �2). By

Proposition 3, �2 = �B (r2=R2) ; determined by equation (29). In this phase, r2 = rB and rB is given by

equation (42), a function of � only. Substitute (42) for r2 and we �nd in a Phase-2 equilibrium, investors�

decision on the discount factor commands that �2 = �B
�
rB (�2) =R2

�
; from which explicitly we �nd

R2 = � (�2) :=
(1� qL) (1� !)

(1� x) �2 + x�L � qL
� (1� p) (�H � �2)

�e � �2
; (46)

with

x := (1� p) (1� qH) : (47)

Lemma 11 �0 > 0. That is, in Phase 2, the lending rate is positively related to the discount factor.

Proof. See Appendix A.

This positive relationship of R2 with �2 results from investors�decision on the discounting factor, which

is in contrast to the R-� relationship resulting from the bank�s decision, which is negative: The higher the
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discount factor, the lower the bank�s funding cost and hence the lower the lending rate. The positive R-�

relationship in Lemma 11 is driven by @
=@R < 0 given in Lemma 3. In Phase 2, each unit of lending is

cushioned and serviced by 
 = G=D units of corn. If R rises, the quantity 
 of corn to service a unit of

lending decreases (as @
=@R < 0) and the liquidity demand ! � 
 that needs the external liquidity to meet

increases, which pushes up the discount factor �.

Equation (46) is independent of G: In Phase 2, thus, the corn stock G a¤ects the discount factor only

via its impact on the lending rate R2; which is due to R2 = RB (G; �2) ; equivalent to G = � (R2; �2). Using

R2 = � (�2) ;

G = � (� (�2) ; �2) : (48)

[� (� (�) ; �)]
0
� = �

0
R�

0 + �0� < 0 because �
0
R < 0 and �

0
� < 0 by Lemma 10. Therefore, a Phase 2-equilibrium

is unique. Moreover, in the equilibrium, with the liquidity stock G rising, the discount factor �2 falls, and so

does the lending rate R2 = � (�2). As we saw, the discount factor falls only because the lending rate falls.

The latter is driven by Lemma 9, where we saw a rise in the liquidity stock G enlarges the lending scale and

reduces the lending rate, by giving the bank a larger loss-absorbing capacity. The Phase-2 equilibrium thus

goes the same way as one might intuitively think.

By Proposition 4, a Phase-2 equilibrium exists if �
�
1
�cA (�2) ; �2

�
� G � �

�
1
�cB1 (�2) ; �2

�
; which, given

equation (48) and �0R < 0, is equivalent to

1

�
cA (�2) � � (�2) �

1

�
cB1 (�2) : (49)

Both cA (�) (de�ned in 38) and cB1 (�) (de�ned in 39) are a decreasing function. At � = �L; 1�cB1 =
1
�cA >

1 > �: Obviously, if � ! �e; � ! 1 and is greater than 1
�cA and

1
�cB1. Condition (49) is equivalent to

�2 � �2 � �2; where �2 and �2 are respectively the unique root of 1�cA (�) = � (�) and
1
�cB1 (�) = � (�) ; as

is illustrated as follows.

Figure 4: Condition (49) holds if and only if �2 � �2 � �2 and �e > �2 > �2 > �L:
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Claim 2 If G 2
�
�
�
1
�cA

�
�2
�
; �2
�
;�
�
1
�cB1

�
�2
�
; �2
��
; then there is a unique Phase-2 equilibrium. If G

ascends through this interval, the equilibrium discount factor �2 decreases from �2 to �2 and the equilibrium

lending rate R2 = � (�2) decreases from 1
�cA

�
�2
�
to 1

�cB1
�
�2
�
.

Proof. See Appendix A.

We have seen the Phase-1 equilibrium exists if G < �
�
1
�cA (�e) ; �e

�
; where the lower bound of G for the

Phase-2 equilibrium is �
�
1
�cA

�
�2
�
; �2
�
: The comparison between the two thresholds is facilitated by the

following lemma.

Lemma 12 If
qL (1� �e)
�e � qL

! (1� !) > 1� �
�

; (50)

then �
�
1
�cA (�) ; �

�
is an increasing function of � over [�L; �e]; �

�
1
�cA (�L) ; �L

�
> 0; and 1

�cB1
�
�2
�
> RNW :

Proof. See Appendix A.

In what follows, we assume (50) holds true. As a result, �
�
1
�cA (�e) ; �e

�
> �

�
1
�cA

�
�2
�
; �2
�
> 0 and

1
�cB1

�
�2
�
> RNW : Then the equilibria of Phases 1 and 2 can be illustrated as follows.

Figure 5: The equilibria of Phases 1 and 2, the lending rate Re (the solid line) and discount factor �e (the

dashed line). In Phase 2, a rise in the liquidity stock G; by giving the bank a greater loss-absorbing

capacity, allows for a larger lending scale and a smaller lending rate, as one might intuitively think.

Phase 3 : In this phase, on the one hand, G > 
D and the bank is inside Regime B, while on the

other hand, G < !D and it needs the external liquidity to meet the liquidity demand. By Proposition

3, the discount factor �3 is determined by equation (31). By Proposition 4, the equilibrium lending rate

R3 =
1
�cB1 (�3). The two sides put together, �3 is determined by the following equation.

G = D

�
1

�
cB1 (�3)

��
! � p (�3 � �L) �3

(1� p) (�H � �3)
1

�
cB1 (�3)

�
:= ' (�3) : (51)
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And R3 = 1
�cB1 (�3) : Therefore, di¤erent to Phase 2, in Phase 3, the liquidity stock G a¤ects the lending

rate only via its impact on the discount factor. The following property of function ' (�) is important for the

analysis.

Lemma 13 There exists a ��3 2 [�L; �H) such that '0 > 0 for � < ��3 and '
0 < 0 for � > ��3: '

0 < 0

throughout [�L; �H) if
p

1� p �
�

1� �
�H � �L
�L

: (52)

Proof. See Appendix A.

To simplify the exposition, we assume (52) and focus on the case in which ' (�) is decreasing throughout

[�L; �H) : By Proposition 4, a Phase-3 equilibrium exists if �
�
1
�cB1 (�3) ; �3

�
� G � !D

�
1
�cB1 (�3)

�
; which,

with equation (51), is equivalent to

�

�
1

�
cB1 (�3) ; �3

�
� ' (�3) � !D

�
1

�
cB1 (�3)

�
: (53)

The second inequality holds for any �3 2 [�L; �H) : The �rst one, with certain rearrangement, is equiva-

lent to 1
�cB1 (�3) � � (�3) ; which, by Figure 4, is equivalent to �3 � �2: Therefore, inequalities of (53)

hold if and only if �3 2
�
�L; �2

�
; which, with equation (51), is equivalent to G 2

�
'
�
�2
�
; ' (�L)

�
=�

�
�
1
�cB1

�
�2
�
; �2
�
; !D

�
1
�cB1 (�L)

��
: Hence, if G is within this interval, a Phase-3 equilibrium uniquely

exist, as is illustrated as follows.

Figure 6: Given that ' (�) is decreasing, if G 2
�
�
�
1
�cB1

�
�2
�
; �2
�
; !D

�
1
�cB1 (�L)

��
there is a unique

Phase-3 equilibrium and the equilibrium discount factor �3 decreases with G.

Intuitively, the decreasing of �3 with the liquidity stock G is due to a mechanism parallel to that in

Malherbe (2014). The larger the liquidity stock G, the smaller the bank�s liquidity need wD � G that is

met the external liquidity; hence the worse the lemon�s problem and the greater the discount investors apply

to evaluate the loans. With �3 decreasing, the lending cost cB1 (�3) is increasing and so is the lending rate

R3 =
1
�cB1 (�3). Observe that this reduces the lending scale D and thus the genuine liquidity need !D �G

that is met with the external liquidity, causing the discount factor to fall even further.
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To summarize:

Claim 3 Assume (52) holds. If G 2
�
�
�
1
�cB1

�
�2
�
; �2
�
; !D

�
1
�cB1 (�L)

��
; there exists a unique Phase-3

equilibrium in which the bank is within Regime B. If G ascends through the interval, the equilibrium discount

factor �3 decreases from �2 to �L; and the equilibrium lending rate R3 = 1
�cB1 (�3) increases from

1
�cB1

�
�2
�

to 1
�cB1 (�L) :

Built on Figure 5, the equilibria of Phases 1 to 3 can be illustrated as follows.

Figure 7: The equilibria of Phases 1 to 3, the lending rate Re (the solid line) and discount factor �e (the

dashed line). In Phase 3, in the mechanism of Malherbe (2014), a rise in the liquidity stock G aggravates

the lemons problem, causing the discount factor �3 to fall and thus the lending rate R3 to rise.

Phase 4 : In this phase, the bank is at the boundary of Scenario B2, in which it can self-satisfy its

liquidity needs: G = !D: This equation pins down the bank�s lending rate: R4 = R (G) = A� (!=G)
1��.

By Proposition 3, �4 = �L; as the bank needs no external liquidity to meet the liquidity demand, investors

regard any o¤er of exchanging its loans with liquidity as an attempt to dump lemons. By Proposition 4, a

Phase-4 equilibrium exists if G 2
�
!D

�
1
�cB1 (�4)

�
; !D

�
1
�cB2 (�4)

��
=
�
!D

�
1
�cB1 (�L)

�
; !D

�
1
�cB2 (�L)

��
:

Observe that 1
�cB2 (�L) = 1= (��e) = R

NW : To summarize,

Claim 4 If G 2
�
!D

�
1
�cB1 (�L)

�
; !D

�
1
�cB2 (�L)

��
; there is a unique Phase-4 equilibrium, in which �4 =

�L; and R4 = A� (!=G)
1��

: If G ascends through the interval, the equilibrium lending rate R4 decreases

from 1
�cB1 (�L) to

1
�cB2 (�L) = R

NW .

This decreasing relationship is because in Phase 4, self-satisfaction of the liquidity needs imposes a

binding constraint !D (R) � G is binding. Therefore, a greater liquidity stock G, by giving the bank a

larger capacity to meet its liquidity needs, relaxes the constraint, hence allowing for a higher lending scale

and a lower lending rate. Phase 4 thus follows the intuitive thinking, as in Phase 2.

Built on Figure 7, the equilibria of Phases 1 to 4 can be illustrated as follows.

29



Figure 8: The equilibria of Phases 1 to 4, the lending rate Re (the solid line) and discount factor �e (the

dashed line). In Phase 4, the lending rate decreases the liquidity stock G because a larger stock give the

bank a larger capacity to meet its liquidity needs, as the intuitive thinking would suggest.

Phase5 : Lastly, in this phase, the bank is inside the self-satisfaction case: G > !D: As in Phase 4,

any attempt of exchanging its loans with liquidity is interpreted by investors as dumping lemons and thus

�5 = �L. However, di¤erent to Phase 4, now the self-satisfaction constraint is no longer binding. As a result,

a larger liquidity stock G relaxes the constraint no longer, nor a¤ects the lending rate. By Proposition 4

R5 =
1
�cB2 (�L) = RNW , independent of G, and the Phase-5 equilibrium exists if G � !D

�
1
�cB2 (�5)

�
=

!D
�
1
�cB2 (�L)

�
: To summarize,

Claim 5 If G � !D
�
1
�cB2 (�L)

�
; there is a unique Phase-5 equilibrium, in which �5 = �L and R5 = RNW

independent of G.

Observe that in the Phase-5 equilibrium, as in the Phase-1 equilibrium, the lending rate is equal to RNW ;

the one that the bank charges when it faces no noisy withdrawal. However, the reasons are di¤erent. In

Phase 1, the equality is because �e = �e that is, the lemons�problem is overcome and incurs no extra costs

of liquidity borrowing. In Phase 5, it is because the bank�s liquidity stock abounds exempting the bank from

the need of liquidity borrowing.

With all of the �ve phases examined, we �nally reach the full picture on the e¤ect of the bank�s liquidity

stock G on its equilibrium lending rate Re and discount factor �e under Assumptions (50) and (52). Adding

the Phase 5 equilibrium to Figure 8, this full picture can be illustrated as follows.
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Figure 9: The full picture of the lending rate Re (the solid line) and discount factor �e (the dashed line) in

relation to the corn stock G. In Phase 1, Re = RNW because the lemons problem is overcome by the

inverse risk-shifting e¤ect and incurs no extra costs for liquidity borrowing. In Phases 2 and 4, Re

decreases with G because a larger G; by giving the bank a greater capacity to absorb risks and to meet

liquidity needs, allows for a larger lending scale, as one might intuitively think. In Phase 3, Re increases

with G in the in the mechanism of Malherbe (2014). In Phase 5, Re = RNW because the liquidity stock

abounds exempting the bank from the need of liquidity borrowing.

As depicted above, the equilibrium lending rate Re has a discontinuous, non-monotonic relationship

with the liquidity stock G: The discontinuity part is due to the regime switch, which occurs either at

G = �
�
1
�cA

�
�2
�
; �2
�
or at G = �

�
1
�cA (�e) ; �e

�
: In Regime A, the lemons problem is overcome by the

inverse risk-shifting e¤ect and incurs no extra costs for the bank to obtain the external liquidity, which is

represented by the equilibrium discount factor is equal to �e; the discount factor that obtains if the bank has

no private information about the loan quality. By contrast, in Regime B, the lemons problem is not overcome

and adds costs for the bank to obtain the external liquidity, causing the equilibrium discount factor falling

below �e. A switch between these two regimes, therefore, entails an abrupt change in the bank�s funding

cost, which induces a discontinuous change in its lending rate.

Recall that the liquidity stock actually acts in the identity of the safe asset when its rise beyond the

thresholds forces the regime change from A to B: The smaller the safe asset, the greater the loss borne

by the bank�s debt, and the stronger the inverse risk-shifting e¤ect. The link between the loss borne by

the debt and the strength of the inverse risk-shifting e¤ect drives a complementarity between the lending

scale and the discount factor and this complementarity drives the existence of two equilibria when G 2�
�
�
1
�cA

�
�2
�
; �2
�
;�
�
1
�cA (�e) ; �e

��
; one in Regime A, the other in Regime B, as we see from Figure 9.

Speci�cally, if the bank expects a high discount factor, i.e. � = �e; then it charges a low interest 1= (��e) ; as

a result, its lending scale D is large and thus the bad-state loss borne by the debt is high, which induces an

inverse risk-shifting e¤ect strong enough to overcome the lemons problem, and hence the bank is indeed in
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Regime A and the discount factor is indeed �e: By a parallel argument, if the bank expects a low discount

factor, i.e. � = �2; then it will end up in Regime B and this expectation is also self-ful�lled.

Within Regime B, which can be in equilibrium if G � �
�
1
�cA

�
�2
�
; �2
�
; both what the intuitive thinking

would predict and what Malherbe (2014) would predict are a part of the full picture. In Phase 2, the lending

is at the border of Regime B, and in Phase 4, it is at that of the scenario in which its liquidity needs are

self-satis�ed. Namely, the border constraint �G � 
D for Phase 2 and G � !D for Phase 4 �is binding.

Hence, a higher liquidity stock G relaxes these constraints and allows for a larger lending scale D and hence

a lower lending rate. This prediction conforms with what one might intuitively think. On the other hand,

in Phase 3, where 
D < G < !D in equilibrium, that is, the bank is inside Regime B and far away from the

self-satisfaction scenario, this e¤ect of relaxing a binding constraint does not obtain. Rather, a higher stock

G of the bank�s own liquidity means a smaller genuine liquidity need that is to be met with the external

liquidity and a greater chance of lemon dumping, hence, a lower discount factor, a higher funding cost and

thus a higher lending rate. This prediction conforms with Malherbe (2014).

As we have seen, the liquidity stock G acts in the identity of the liquid asset in Phase 3 and in the identity

of the safe asset when its change enforces the regime switch between Phases 1 and 2. The double identity of

the liquidity stock hence plays an important part in its relationship with the bank�s lending rate and lending

scale.

6.1 Discussion of the assumptions

The full picture is built on the four assumptions that we have made: (4), (16), (50) and (52). Of these

assumptions, the �rst two are the ones that drive the results. Assumption (4) ensures that bank borrowers

default in the contingency of eA = A: If they never default, then each loan will be worth its face value

and the bank will have no private information about the loan quality, namely, the lemons problem will be

absent. Assumption (16) ensures the date-1 liquidity demand is large enough, which is necessary to drive the

discontinuous, non-monotonic e¤ect of the liquidity stock on the bank�s lending behaviour, as we have seen

if the demand is zero then it has no impact on the latter. On the other hand, Assumptions (50) and (52)

are not essential for our results. They are made solely to simplify the exposition. Assumption (50) ensures

that �
�
1
�cA (�e) ; �e

�
> �

�
1
�cA

�
�2
�
; �2
�
; that is, there is no gap for the value of G between Phase 1 and 2.

If such a gap exists, then for G 2
�
�
�
1
�cA (�e) ; �e

�
;�
�
1
�cA

�
�2
�
; �2
��
, in equilibrium the bank is to play a

mixed strategy with XL at date 1 and accordingly the discount factor that investors use at date 1 is �M ; as

is illustrated in Figure 1. This complicates the picture, but will not change it qualitatively. Assumption (52)

lets us focus on the case in which function ' (�) de�ned in (51) is decreasing over [�L; �H) : If ' (�) is not so,

by Lemma 13, ' (�) is in a "^" shape and the case is analyzed in Appendix B, where we show there are two
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Phase-3 equilibria, one as we have studies, the other being unstable in the sense of Malherbe (2014). This,

again, complicates the picture, but will not qualitatively change it.

Now we show that a non-empty area in the parameter space is demarcated by these four assumptions

altogether. Assumption (4) follows from

A

A�
<

qL
1� � (1� qL)

; (54)

while the other three assumptions are replicated below:

! � 1� A

A�
(55)

p

1� p � �

1� �
�H � �L
�L

(56)

qL (1� �e)
�e � qL

! (1� !) >
1� �
�

: (57)

Given (qH ; qL) that satis�es 1 > qH > qL > 0 and ! 2 (0; 1) ; we can pick a A=
�
A�
�
close to 1 enough to

satisfy (55), and then an � close to 1 enough to satisfy (54) and (57) at p = 1=2; and lastly we pick a p > 1=2

close to 1 enough to meet (56). Observe that the left hand side of (57) decreases with �e = p�L + (1� p) �H
and hence increases with p: Thus if it is satis�ed at p = 1=2; then it is also satis�ed for any p > 1=2: Hence,

for any given pro�le (qH ; qL; !) 2 (0; 1)3 such that qH > qL; there is a non-empty set of
�
A=
�
A�
�
; �; p

�
that

satis�es all the four inequalities from (54) to (57).

7 Conclusion

In response to the 2008 �nancial crisis, the Basel Committee introduces the Liquidity Coverage Ratio stan-

dard. This paper considers how a bank�s stock of liquid assets a¤ect its lending rate and lending scale,

when the market for external liquidity is beset with the lemons problem. We �nd that the relationship of

the liquidity stock with the lending behaviour is discontinuous and non-monotonic. A crucial part for this

relationship is played by the inverse risk-shifting e¤ect, which is due to the double identity of liquid assets.

Namely, these assets are typically also safe assets. Hence, exchanging lemon assets with external liquidity

(in the means of either asset sale or collateralized borrowing) amounts to inverse risk-shifting, which reduces

the equity value as the seminal work of Jensen and Meckling (1976) shows. This inverse risk-shifting e¤ect

therefore provides the bank with disincentives to dump lemons. Indeed, when the liquidity stock is below a

threshold, the bank�s safe assets are meagre and the inverse risk-shifting e¤ect is strong enough to overcome

the lemons problem, which thus adds no costs for the bank to obtain external liquidity. It starts adding

to the cost of external liquidity if the liquidity stock is above the threshold. Therefore, when the stock

ascends above the threshold, the bank�s funding cost abruptly rises and hence so does its lending rate, and

consequently its lending scale abruptly falls.
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This fact show that a larger liquidity stock is not always a bless. Another reason for it become a curse

is the mechanism found by Malherbe (2014), when the stock is within a certain interval. However, there are

intervals if the stock is within which, a larger liquidity stock is a bless �namely leading to a lower lending

rate and higher lending scale. It generates these e¤ects by enlarging the bank�s capacity to absorb risks or

to manage its liquidity demand, as one might intuitively think.
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Appendix A: Proofs

The proof of Lemma 1
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Proof. First, we prove that under Assumption (4), entrepreneurs default in the bad state with any lending

interest R: Facing lending rate R; their decision problem on the number D units of deposit to borrow is

given by (3). If they do not default in the bad state, this decision problem becomes:

max
D

�
qeA+ (1� qe)A

�
D� �DR:

At the optimum,

D =

 �
qeA+ (1� qe)A

�
�

R

! 1
1��

:

Then, in the bad state: ADa = ADa�1 � D = DR � A

[qeA+(1�qe)A]�
< DR under Assumption (4), which

contradicts with the supposition that they do not default in the bad state.

Given they default, entrepreneurs�decision problem becomes:

max
D
AD� �DR:

At the optimum, their demand of bank deposit is thus given by (5). In the bad state, as they default, all

their output is passed on to the bank. Hence the repayment to the bank is ADa = ADa�1�D = A

A�
�DR.

The proof of Lemma 3

Proof. At eq = qL; from (22) it follows that V 0 (X) > 0 if eVB (X) > 0 and V 0 (X) < 0 if eVB (X) < 0:

Furthermore, by (18), eV 0B (X) = �A=(A�)
� + 1 > 0 because A=

�
A�
�
< qL + (1� qL)A=

�
A�
�
= �L < �:

Hence, if eVB (X) � 0; then allX 2 (X;X]; eVB (X) > 0 and hence V 0 (x) > 0 andXL = X; and if eVB �X� � 0;
then V 0 (X) < 0 always and XL = X: Let G1 and G2 be the value of G de�ned by the following equations:

eVB (X;G1) = 0eVB �X;G2� = 0:

Then, G1 > G2 because eVB strictly increases with G by (18). If G � G1; then eVB (X) � 0 and henceXL = X;
and if G � G2; then eVB �X� � 0 and hence XL = X: For G 2 (G2; G1) ; then eVB (X) < 0 and eVB �X� > 0:
For such a G; the graph of V (X) is in a "V" shape and hence XL is either X or X depends on the comparison

of V
�
X
�
to V (X) : Observe that V

�
X
�
= qLVG

�
X
�
+(1� qL) eVB �X� = DR�+G�!D� (1� !)Dr2 and

V (X) = qLVG (X)

=

8<: qL [DR� (!D �G) =� � (1� !)Dr2] if X = !D �G � 0

qL [DR� (!D �G)� (1� !)Dr2] if !D �G < 0

9=; :
Observe that

�
V
�
X
�
� V (X)

�0
G
� 1 � (qL=�) > 0 because qL < qL + (1� qL)A=

�
A�
�
= �L < �: Recall

that at G = G2; V
�
X
�
� V (X) < 0 and at G = G1; V

�
X
�
� V (X) > 0: Hence, there exists G� 2 (G2; G1)

such that if G < G�; then V
�
X
�
� V (X) < 0 and hence XL = X; and if G > G�; then XL = X:
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This G� is determined by V
�
X
�
� V (X) = 0; which, if X = !D �G � 0; is equivalent to

DR� +G� � !D � (1� !)Dr2 = qL [DR� (!D �G�) =� � (1� !)Dr2],

[1� (qL=�)]G� = [qLR�R� + (1� (qL=�))! + (1� qL) (1� !) r2]D ,

G� =

�
� (1� (qL=�))R�

1� (qL=�)
+ ! +

(1� qL) (1� !)
1� (qL=�)

r2

�
D ,

G� =

�
! �

�
R� (1� qL) (1� !)

� � qL
r2

�
�

�
D

= 
D:

Hence, (23) holds true. Observe that by lending out one unit of liability, the bank promises to pay r2

and obtains at most R at date 2. The bank will always make sure that R > r2: Also, by (8), � � �L =

qL + (1� qL)A=
�
A�
�
: Then under Assumption (16), the following condition holds for any � � �L:

R� (1� qL) (1� !)
� � qL

r2 > 0: (58)

As a result, 
 = ! �
�
R� (1�qL)(1�!)

��qL r2

�
� < ! and @
=@� < 0:

If !D �G < 0 and hence X = 0; then V
�
X
�
� V (X) = 0 is equivalent to

DR� +G� !D � (1� !)Dr2 = qL [DR� (!D �G)� (1� !)Dr2],

G =

�
! �

�
R� (1� qL) (1� !)

� � qL
r2

�
� � qL
1� qL

�
D

= 
0D:

Observe that under condition (58), 
0 < ! and also 
 < !: Hence, if !D �G < 0; then G > !D > 
0D and

therefore XL = X; which conforms with equation (23).

Regarding the property of 
; that @
=@R = �� < 0 is obvious, while we have shown above @
=@� < 0

and 
 < !.

As for the last claim, because G� 2 (G2; G1) ; we have eVB (X) < 0 and eVB �X� > 0 at G = G� = 
D: If
XL = X; then by (23), G � G� and eVB (XL) = eVB �X;G� � eVB �X;G�� > 0 . If XL = X; then by (23),
G � G� and eVB (XL) = eVB (X;G) � eVB (X;G�) < 0:
Proof of Lemma 4

Proof. Let rA denote the value of the threshold r�2 if X is in Regime A, that is, XL = X = max (!D �G; 0) :

From the binding liquidity constraint (27), rA is determined by

qer
A + (1� qe)min

�
rA; r (R; �;G)

�
= 1; (59)
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where from (19),

r (R; �;G) : =

�
DR� X

�

�
A

A�
+X +G� !D

(1� !)D

=
A=
�
A�
�

1� !

 
R+

1

�
min

 
G

�
R

A�

� 1
1��

� !; 0
!
+
A�

A
max

 
G

�
R

A�

� 1
1��

� !; 0
!!

:(60)

Obviously, r (R; �;G) increases with all of its arguments. By (59), hence, rA is a function decreasing with

(R; �;G) ; denoted by rA (R; �;G) :

Let rA denote the value of the threshold r�2 in Regime B, that is, if XL = X: By Lemma 3, eVB �X� > 0.
Hence r2 (XL) = r2 by (20). Then, by (25) and (27), rB is determined by

[1� (1� p) (1� qH)] rB + (1� p) (1� qH)min
�
rB ; r (R; �;G)

�
= 1: (61)

Because r (R; �;G) increases with (R; �;G) ; rB (R; �;G) also decreases with all its arguments.

We are left to prove rA > rB : For this purpose, let function r = f (x) be implicitly de�ned by

xr + (1� x)min (r; r (R; �;G)) = 1:

Then rA = f (qe) and rB = f (1� (1� p) (1� qH)) = f (qe + p (1� qL)) : By the implicit function theorem,

f 0 (x) � 0: Hence, rA = f (qe) � f (qe + p (1� qL)) = rB .

Proof of Lemma 5

Proof. Let

a : = qL + (1� qL) (1� !)
r2
R

f (�; a) : =
p

1� p
(� � �L) (� � qL)

�H � �
� � + a:

Then equation (29) has a unique solution within (�L; �e) if and only if f (�; a) has a unique root within (�L; �e).

First, there exists one root, because f (�L; a) = �
�
�L � qL � (1� qL) (1� !) r2R

�
=� (1� qL)

�
A

A�
� (1� !) r2R

�
jr2<R <

� (1� qL)
�
A

A�
� (1� !)

�
jassumption (16) < 0; and, given that p

1�p
�e��L
�H��e = 1; f (�e; a) = �qL + a =

(1� qL) (1� !) r2R > 0: Second, we prove that the root is unique. For this purpose let �s denote the

smallest of the roots. By de�nition, then for any x < �s; f (x; a) < 0 and f (�s; a) = 0: It follows that

f 0� (�s; a) � 0: Observe that f (�; a) is strictly convex over [�L; �e] : Hence, f 0� (x) > f 0� (�s) � 0: Then for any

x > �s; f (x; a) > f (�s; a) = 0: That is, there is no root that is bigger than �s: Hence, �s is the unique root.

To prove that �B
0 � r2

R

�
< 0; it su¢ ces to show that the unique root of f (�; a) = 0 increases with a: For

this purpose, denote the root by � (a) and consider a > a0: Then 0 = f (� (a) ; a) > f (� (a) ; a0) : Because

� (a0) is the unique root of f (�; a0) = 0; the argument above shows that f (x; a0) < 0 only if x < � (a0) :

Therefore that f (� (a) ; a0) < 0 implies that � (a) < � (a0) :
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Proof of Proposition 3

Proof. Before we prove equation (30) branch by branch, we prove that � � �e always. That is because

XH = X and XL � X and thus XL � XH ; and then � � �e follows from (8).

We have seen that if G � !D; then X = 0 and hence XH = X = 0 and by (8), � = �L; that is, we

have proven the last branch of (30). We thus only need to consider the case in which G < !D: In this case

XH = X > 0 and hence by (8), � > �L and Lemma 3 can be applied.

When G starts falling from G = !D; because 
 < ! due to condition (58), the bank enters Regime B in

which G � 
 (�)D: In this regime, by Lemma 3 XL = X = DR�; while XH = X = !D �G Hence, by (8),

� =
pX

pX + (1� p)X
�L +

(1� p)X
pX + (1� p)X

�H ,

pX

pX + (1� p)X
(� � �L) =

(1� p)X
pX + (1� p)X

(�H � �),

� � �L
�H � �

=
1� p
p

X

X
=
1� p
p

!D �G
DR�

;

which leads to
� � �L
�H � �

� =
1� p
p

!D �G
DR

; (62)

that is, equation (31). Hence, � = �B : Obviously, at G = !D; �B = �L and hence � is continuous with G at

G = !D: Moreover, the left hand side of (31) increases with �; while its right hand side decreases with G.

Hence, �B decreases with G in Regime B, where G � 
 (�)D:

With G falling from G = !D; the bank stays within Regime B until G reaches the boundary G = 
 (�)D;

substituting which into (62), which then becomes

� � �L
�H � �

� =
1� p
p

!D � 
 (�)D
DR

j(24) =
1� p
p

�
R� (1�qL)(1�!)

��qL r2

�
�

R
;

which is equivalent to
� � �L
�H � �

=
1� p
p

�
1� (1� qL) (1� !)

� � qL
r2
R

�
;

that is, equation (29). By Lemma 5, it has a unique solution for �; which is �B : Therefore, the lower bound

of G for the bank to stay in Regime B is G = 

�
�B
�
D; while the upper bound is !D: It follows that if

G 2
�


�
�B
�
D;!D

�
; the bank is in Regime B and � = �B ; so we have proved the third branch of (30).

If (�;G) satis�es G � 
 (�)D and the bank is in Regime A, then by Lemma 3 XL = X = XH : Hence, by

(8), � = p�L + (1� p) �H = �e and the condition that G � 
 (�)D is equivalent to G � 
 (�e)D: Altogether

� = �e if G � 
 (�e)D and we have proven the �rst branch of (30).

By Lemma 5, �B < �e and we know @
=@� < 0: Therefore, if G 2
�

 (�e)D; 


�
�B
�
D
�
; neither is

XL = X (i.e. the bank in Regime B) with certainty, nor is XL = X (i.e. the bank in Regime A) with
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certainty. The bank must play a mixed strategy, which holds true only if G = 
 (�)D: It follows that � = �M

if G 2
�

 (�e)D; 


�
�B
�
D
�
and we have proven the second branch of (30). In this branch, � = 
�1

�
G
D

�
decreases with G because @
=@� < 0:

At the threshold G = 
 (�e)D; �M = �e and hence � is continuous with G. So is � at the threshold

G = 

�
�B
�
D where �M = �B : Therefore, and hence � is continuous with G throughout.

We have seen � decreases with G in the second and third branches of (30). Obviously � is constant in the

�rst and the last branches. Altogether, � decreases with G throughout.

Proof of Lemma 9

Proof. Because 
 (R; r2; �) = ! � (R� (1� qL) (1� !) = (� � qL)� r2) �; by (66)

! = G

�
1

A�

� 1
1�� �

RB
� 1
1�� +

�
RB � (1� qL) (1� !)

� � qL
rB
�
RB ; �; G

��
�: (63)

The right hand side of (63) increases with RB because @rB=@R < 0: It also increases G because @rB=@G < 0

and with � because @rB=@� < 0 and condition (58) holds true. The lemma then follows from the Implicit

Function theorem.

Proof of Lemma 6

Proof. At date 0, D = D (R) and 
 = 
 (R; r2; �) = ! � (R� (1� qL) (1� !) = (� � qL)� r2) � by (24). If

the bank is in Regime A, r2 = rA (R; �;G) by (28). Altogether, the bank chooses XL = X and is in Regime

A if



�
R; rA (R; �;G) ; �

�
D (R) > G: (64)

Given that @
=@R < 0; @
=@r2 > 0 and @rA=@R < 0; and that D0 (R) < 0; the left hand side of condition

(64) decreases with R and this condition holds if and only if

R < RA (G; �) ;

where RA is the root of the following equation:



�
RA; rA

�
RA; �; G

�
; �
�
D
�
RA
�
= G: (65)

Similarly, the bank is in Regime B and chooses XL = X if 
D < G. In Regime B, r2 = rB (R; �;G) ; where

rB (R; �;G) is de�ned by (61) and also decreasing with R. Using a similar argument, the bank is in Regime

B if and only if

R > RB (G; �) ;

where RB is the root of the following equation:



�
RB ; rB

�
RB ; �; G

�
; �
�
D
�
RB
�
= G: (66)
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As the left hand side of condition (64), the left hand side of condition (66) decreases with R:

Given that @
=@r2 > 0 and that rA (R; �;G) > rB (R; �;G) ; (65) implies that



�
RA; rB

�
RA; �; G

�
; �
�
D
�
RA
�
< G;

that is, f
�
RA
�
< G; where f (R) := 


�
R; rB (R; �;G) ; �

�
D (R) :By de�nition of RB ; f

�
RB
�
= G: Then

f
�
RA
�
< f

�
RB
�
:We saw above that f 0 < 0: Hence RA > RB :Moreover, by Lemma 3, 
 < !: Therefore, the

left hand side of equation (65) is smaller than !D
�
RA
�
: From this equation it follows that G < !D

�
RA
�
;

which is equivalent to R (G) > RA:

Proof of Lemma 7

Proof. Given that D = D (R) ; it follows from (33) that

V A =

8<: D (R)� �eR+G if R � R (G)

D (R)�
�
�eR� ! �e���

�
+ �e

� G if R < R (G)

9=; (67)

and from (34)

V B =

8<: D (R)� (p� + (1� p) �H)R+G if R � R (G)

D (R)�
h
(p� + (1� p) �H)R� ! (1�p)(�H��)�

i
+ �e+p(���L)

� G if R < R (G)

9=; : (68)

Compare V A given by (67) and V B given by (68). Then the �rst claim straightforwardly follows from the

observation that at � = �L; p� + (1� p) �H = �e; (1� p) (�H � �) = �e � �; and �e + p (� � �L) = �e:

For the second claim, because RA < R by Lemma 6, if R 2
�
RB ; RA

�
; then R < R and thus V A < V B

is equivalent to
�
R�e � ! �e���

�
D (R) + �e

� G < D (R)
h
R (p� + (1� p) �H)� ! (1�p)(�H��)�

i
+ �e+p(���L)

� G;

which is in turn equivalent to�
�p (� � �L)R+ !

p (� � �L)
�

�
D (R) <

p (� � �L)
�

Gj�>�L ,

(�R� + !)D (R) < Gj
D(R)=(A�=R)

1
1��

,

! �R� < G

�
1

A�

� 1
1��

R
1

1�� ,

! < G

�
1

A�

� 1
1��

R
1

1�� +R�: (69)

By (63)

! = G

�
1

A�

� 1
1�� �

RB
� 1
1�� +

�
RB � (1� qL) (1� !)

� � qL
rB
�
RB ; �; G

��
�:

It follows that ! < G
�

1
A�

� 1
1�� �

RB
� 1
1�� +RB�: Hence, inequality (69) holds true for R = RB : Because its

right hand side increases with R, it holds true for all R 2
�
RB ; RA

�
:
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Proof of Lemma 8

Proof. That cB1 = (1 + ! (1� p) (�H � �) =�)� cB2 > cB2 is obvious. That cA � cB1 is equivalent to

1 + ! (�e � �) =�
�e

� 1 + ! (1� p) (�H � �) =�
p� + (1� p) �H

,

p� + (1� p) �H
�e

� 1 + ! (1� p) (�H � �) =�
1 + ! (�e � �) =�

;

which, with both sides subtracting 1 and using fact that (�e � �) = p (�L � �)+(1� p) (�H � �), is equivalent

to
p (� � �L)

�e
� p (� � �L)� !=�
1 + ! (�e � �) =�

; (70)

which holds with equality if � = �L. If � > �L; inequality (70) holds true strictly because it is equivalent to

1

�e
>

!=�

1 + ! (�e � �) =�
,

1 + ! (�e � �) =� > !�e=� ,

1� ! + !�e=� > !�e=�:

Proof of Lemma 10

Proof. By Lemma 6, RB < R: Hence, if R = RB ; then G < !D (R) ; or equivalently,

G

�
R

A�

� 1
1��

� ! < 0:

As a result, min
�
G
�
R
A�

� 1
1�� � !; 0

�
= G

�
R
A�

� 1
1�� � ! and max

�
G
�
R
A�

� 1
1�� � !; 0

�
= 0: Substitute

these into (??) and observe that in that equation r2 = rB ; and we have

r =
1

1� !
A

A�

 
R+

1

�

 
G

�
R

A�

� 1
1��

� !
!!

: (71)

At R = RB ; G = 
D =
�
! �

�
R� (1� qL) (1� !) = (� � qL)� rB

�
�
�
D (R) : Since D (R) =

�
R
A�

� �1
1��

; it

follows that

R+
1

�

 
G

�
R

A�

� 1
1��

� !
!
=
(1� qL) (1� !)

� � qL
rB :

Substitute this into (71) and we have

r =
A

A�

1� qL
� � qL

rB

=
�L � qL
� � qL

rB :

Given that � � �L, r2 � rB and

min
�
r2; r

B
�
= r =

�L � qL
� � qL

rB : (72)
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Substitute (72) into (61), and we have

rB
�
1� (1� p) (1� qH) + (1� p) (1� qH)

�L � qL
� � qL

�
= 1;

from which

rB =
1

1� (1� p) (1� qH) ���L��qL
:

Given r2 = rB ; we �nd (42).

At r2 = rB ;


 = ! �
 
R� (1� qL) (1� !)

� � qL
1

1� (1� p) (1� qH) ���L��qL

!
�

= ! �
�
R� (1� qL) (1� !)

� � qL � (1� p) (1� qH) (� � �L)

�
�

= ! �
�
R� (1� qL) (1� !)

(1� (1� p) (1� qH)) (� � �L) + �L � qL

�
�:

= 
 (R; �) :

To prove � (R; �) < !D (R) for any R > 1; it su¢ ces to prove

(1� qL) (1� !)
(1� (1� p) (1� qH)) (� � �L) + �L � qL

� 1;

which, because � � �L and �L� qL = (1� qL)A=
�
A�
�
; follows from 1�! < A=

�
A�
�
; which holds true by

Assumption (16).

From fact that R � RB (G; �) if and only if G � � (R; �) it follows G = � (R; �) is the inverse function

of R = RB (G; �) for any given �: If R = RB (G; �) ; then dR = RB0G dG+ R
B0
� d�: By Lemma 9 R

B0
G < 0 and

RB0� < 0: Hence, @G=@R = 1=RB0G < 0 and @G=@� = �RB0� =RB0G < 0:

Proof of Proposition 4

Proof. For two terms A and B, We de�ne A / B if A and B have the same signs. By (37),

�0 (R) /

8>>><>>>:
1
�cB2 �R if R � R (G)

1
�cB1 �R if R 2 [R

B (G; �) ; R (G)]

1
�cA �R if R < R

B (G; �)

9>>>=>>>; : (73)

Consider �rst the case where G < �
�
1
�cA; �

�
; which is equivalent to 1

�cA < R
B (G; �). In this case, if R <

1
�cA; then R < R

B (G; �) and by (73), �0 (R) = 1
�cA�R > 0: If R >

1
�cA; then R > max

�
1
�cA;

1
�cB1;

1
�cB2

�
by Lemma 8 and hence �0 (R) < 0 always. Also observe that �(R) is a continuous function by (37). Hence,

the point at which �(R) is maximized is R� = 1
�cA:

Second, consider the case where �
�
1
�cA; �

�
� G � �

�
1
�cB1; �

�
; which is equivalent to 1

�cA � R
B (G; �) �

1
�cB1: In this case, if R < R

B (G; �) ; then R < 1
�cA and hence �

0 (R) / 1
�cA�R > 0: If R > R

B (G; �) ; then
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R > 1
�cB1 = max

�
1
�cB1;

1
�cB2

�
by Lemma 8 and hence �0 (R) / 1

�cB1 � R < 0 or �
0 (R) / 1

�cB2 � R < 0:

Hence, R� = RB (G; �) :

Third, consider the case where G 2
�
�
�
1
�cB1; �

�
; !D

�
1
�cB1

��
; or equivalently RB (G; �) < 1

�cB1 <

R (G) : In this case, if R < 1
�cB1; then R < R (G) ; then �0 (R) / 1

�cB1 � R or 1
�cA � R and is positive

in both cases because R < 1
�cB1 �

1
�cA. If R > 1

�cB1; then R > RB (G; �) ; then �0 (R) / 1
�cB1 � R or

1
�cB2 �R; which are both negative because R >

1
�cB1 >

1
�cB2: Hence, R

� = 1
�cB1:

Fourth, consider the case where G 2
�
!D

�
1
�cB1

�
; !D

�
1
�cB2

��
; or equivalently 1

�cB1 > R (G) >
1
�cB2:

In this case, if R < R (G) ; then R < 1
�cB1 and �

0 (R) / 1
�cB1 � R or 1

�cA � R; which are both positive

because R < 1
�cB1 �

1
�cA: If R > R (G) ; then R >

1
�cB2 and �

0 (R) / 1
�cB2 �R < 0: Hence, R

� = R (G) :

Lastly, consider the case where G > !D
�
1
�cB2

�
or equivalently 1

�cB2 > R (G) : In this case, if R <
1
�cB2;

then R < min
�
1
�cA;

1
�cB1;

1
�cB2

�
and hence �0 (R) > 0 always. If R > 1

�cB2; then R > R (G) and hence

�0 (R) / 1
�cB2 �R < 0: Hence R

� = 1
�cB2:

Proof of Lemma 11

Proof. � (�) is de�ned by the implicit function

� = �B
�
rB (�) =� (�)

�
:

By the implicit function theorem, 1 = �B
0
rB0 1� + �B

0
rB ��0

�2
,

�0 =
�2�

��B
0�
rB

�
1 +

�
��B

0�
rB0

1

�

�
:

By Lemma 5, �B
0
< 0 and by equation (42) rB0 > 0: Hence, �0 > 0:

Proof of Lemma 12

Proof. Let

R (�) : =
1

�
cA (�) ;

x : = 1� (1� p) (1� qH)

y : = (1� qL) (1� !)

z : = (1� x) �L � qL:

Then, by Lemma 10, �
�
1
�cA (�) ; �

�
= � (R (�) ; �) = D (R (�))

h
! �

�
R (�)� y

x�+z

�
�
i
:Hence, �0R = D

0
h
! �

�
R� y

x�+z

�
�
i
�

D� = �D
h

1
(1��)R

h
! �

�
R� y

x�+z

�
�
i
+ �
i
= � D

1��

h
!
R +

1
R

y
x�+z � � ��

i
and �0� = �D

h
R� y

x�+z +
xy�

(x�+z)2

i
=

�D
h
R� yz

(x�+z)2

i
: By (38),

cA (�) =
!

�
+
1� !
�e

: (74)
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Then, R0 (�) = � !
��2
: Thus,

�
�
�
1
�cA (�) ; �

��0
> 0,

1

1� �

�
!

R
+
1

R

y

x� + z
� � ��

�
!

��2
> R� yz

(x� + z)
2 (

1

1� �

�
! +

y

x� + z
� � �R�

�
!

�
> (R�)

2
: (75)

Observe that R� = 1
�

�
! + �

�e
(1� !)

�
< 1

� : Hence, inequality (75) follows from

1

1� �

�
! +

y

x� + z
� �

�
! +

�

�e
(1� !)

��
!

�
>

1

�2
,�

(1� qL) (1� !)
x� + z

� � �

�e
(1� !)

�
! >

1� �
�

,�
1� qL

x� + (1� x) �L � qL
� 1

�e

�
�! (1� !) >

1� �
�

jx<1 (�
1� qL
� � qL

� 1

�e

�
�! (1� !) >

1� �
�

: (76)

Observe that the left hand side of inequality (76) decreases with �: Hence, the inequality follows from�
1� qL
�e � qL

� 1

�e

�
�e! (1� !) >

1� �
�

,

qL (1� �e)
�e � qL

! (1� !) >
1� �
�

;

which is inequality (50).

By Lemma 10, �
�
1
�cA (�L) ; �L

�
> 0,

! � 1

�
cA (�L) �L +

(1� qL) (1� !)
�L � qL

�L > 0: (77)

By (74) cA (�L) �L =
�
!
�L
+ 1�!

�e

�
�L < 1: Hence, inequality (77) follows from

! +
(1� qL) (1� !)

�L � qL
�L >

1

�
,

(1� !)
�
(1� qL)
�L � qL

�L � 1
�

>
1� �
�

,

(1� !) qL (1� �L)
�L � qL

>
1� �
�

: (78)

Observe that 1�x
x�qL is a decreasing function over x 2 (qL; 1) : Therefore, inequality (78) follows from assump-

tion (50) because (1� !) qL(1��L)�L�qL > (1� !) qL(1��e)�e�qL > (1� !)! qL(1��e)�e�qL > 1��
� :

Lastly, as RNW = 1
�cA (�e) ; R

NW < 1
�cB1

�
�2
�
if and only cA (�e) < cB1

�
�2
�
; which, by (74) and

(39), is equivalent to 1
�e
<

1+!(1�p)(�H��2)=�2
p�2+(1�p)�H , p�2+(1�p)�H

�e
< 1 +

!(1�p)(�H��2)
�2

; which, using equation

�e = p�L + (1� p) �H and certain rearrangements, is equivalent to

p
�
�2 � �L

�
(1� p)

�
�H � �2

� �2
�e
< !: (79)
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�2 satis�es �
�
�2
�
= 1

�cB1
�
�2
�
; where � (�) is de�ned in equation (46). It follows that

p
�
�2 � �L

�
(1� p)

�
�H � �2

� = 1� �

cB1
�
�2
� (1� qL) (1� !)
(1� x) �2 + x�L � qL

: (80)

where x = (1� p) (1� qH) : Substitute equation (80) into inequality (79), and the inequality is equivalent to

� (1� � (1� !)) < !; (81)

where � :=
�2
�e
< 1 and

� :=
�

cB1
�
�2
� 1� qL
(1� x) �2 + x�L � qL

: (82)

Observe, �rst, that inequality (81) holds for any ! 2 (0; 1) if � > 1; because either 1 � � (1� !) � 0 and

then inequality (81) holds, or 1 � � (1� !) > 0 in which case the left hand side of (81) is smaller than

1� � (1� !) (as � < 1) and 1� � (1� !) < ! , 1�! < � (1� !) ; which holds true if � > 1: Therefore, to

prove RNW < 1
�cB1

�
�2
�
, it su¢ ces to prove that � > 1 under assumption (50). With � de�ned in (82) and

cB1 (�) given by (39), � > 1,

1� qL
(1� x) �2 + x�L � qL

>
1

�

1 + ! (1� p)
�
�H � �2

�
=�2

p�2 + (1� p) �H
(

1� qL
(1� x) �2 + x�L � qL

>
1

�

1 + (1� p)
�
�H � �2

�
=�2

p�2 + (1� p) �H
,

(1� qL) �2
(1� x) �2 + x�L � qL

>
1

�
: (83)

Under assumption (50),
1� �
�

<
qL (1� �e)
�e � qL

:

It follows that
1

�
<
�e (1� qL)
�e � qL

:

Using this inequality, inequality (83) follows from

(1� qL) �2
(1� x) �2 + x�L � qL

>
�e (1� qL)
�e � qL

,

�2

(1� x) �2 + x�L � qL
>

�e
�e � qL

;

which holds true because
�2

(1�x)�2+x�L�qL >
�2

�2�qL >
�e

�e�qL ; where the �rst inequality is due to the fact that

�2 > �L and the second the facts that �2 < �e; and that x
x�qL decreases with x for x > qL:

Proof of Lemma 13
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Proof. We prove that There exists a ��3 2 [�L; �H) such that '0 > 0 for � < ��3 and '0 < 0 for � > ��3: Let

R =
1

�
cB1 (�) ;

� (�) : =
! (1� p) �H�

(1� ! (1� p)) � + ! (1� p) �H
+

p

p� + (1� p) �H
:

Then '0 < 0,
h

!
(1��)R �

�
1��

p(���L)�
(1�p)(�H��)

i
� (�) < p

1�p

h
���L
�H�� +

(�H��L)�
(�H��)2

i
,

!

1� � <
p

1� pR�
(

1

� (�)

"
1� �L

�

�H � �
+
�H � �L
(�H � �)2

#
+

�

1� �
� � �L
�H � �

)
: (84)

Observe that R� = 1
�
(1�!(1�p))�+!(1�p)�H

p�+(1�p)�H = 1
�
1�!(1�p)

p

�
1� (1�p)=p�!(1�p)=(1�!(1�p))

�+(1�p)�H=p �H

�
increases with �;

and that � (�) is an decreasing function, hence 1
�(�) increasing. Therefore, the right hand side of inequality

(84) increases with �: It follows that there exists ��3 such that inequality (84) holds �namely '
0 < 0 � if

� > ��3 and the inverse inequality holds �namely '
0 < 0 �if � < ��3: Hence, we prove the �rst claim of the

lemma.

��3 = �L; that is, '
0 < 0 for all � 2 (�L; �H) ; if inequality (84) weakly holds at � = �L; which is equivalent

to !
1��� (�L) �

p
1�p

1
�cB1 (�L) �L

1
�H��L ; which, because cB1 (�L) �L =

�L+!(1�p)(�H��L)
�e

; is in turn equivalent

to
�

1� �
!

�L + ! (1� p) (�H � �L)
� (�L) �

p

1� p
1

�e (�H � �L)
; (85)

that is, �= (1� �) is below a threshold. To �nd a su¢ cient condition for (85), observe that !
�L+!(1�p)(�H��L)

increases with ! and hence do does � (�L). Therefore, inequality (85) holds true for any ! < 1 if it holds

true at ! = 1; that is, if
�

1� �
�H � �L
�L

� p

1� p ;

that is, condition (56).

8 Appendix B: The other case of Phase 3

If 1= (1� �) > 1= (1� �3), then by Lemma 13, the maximum point ��3 > �L and the graph of ' (�) is in

a "^" shape. In this case, there are two equilibria if G 2
�
!D

�
1
�cB1 (�L)

�
; ' (��3)

�
, of which the discount

factors move in opposite directions with a rise in G, as is illustrated in the �gure below.
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Figure B1: The case of Phase 3 in which ��3 > �L: If G 2 [!D
�
1
�cB1 (�L)

�
; ' (��3)); there are two equilibria:

Equilibrium 1 and Equilibrium 2. The former sees � decreasing with G; the latter increasing.

The equilibrium multiplicity is driven by the complementarity between the optimal lending rate R� and

the discount factor �. At a given G; if at date 0 the bank expects � to be high, then it judges the lending

cost is low and thus charges a low lending rate (as R� = 1
�cB1 (�) is decreasing). As a result, the lending

scale D (R) is large and so is the genuine liquidity need !D � G that is met with borrowing, which induce

the investors to discount the loans with a high � indeed (as �0 (R) < 0 by equation 31, taking into account

D = D (R)). By a parallel argument, if at date 0 the bank expects a low �; this expectation can be self-

ful�lling too if the complementarity is strong. The strength of the complementarity increases with the scale

of D0 (R) ; which is in proportional to 1= (1� �) : Therefore, the equilibrium multiplicity occurs if and only

if 1= (1� �) is large enough.

Equilibrium 2 in Figure B1 above, in which the discount factor increases with G; is unstable in the sense

of Malherbe (2014). To show that, following Malherbe (2014), we construct a mapping from the (rational)

expectation of the discount factor �0 that the bank holds at date 0 to the discount factor � that investors

use at date 1. In Phase 3, at date 0 the bank chooses a lending rate of R
�
�0
�
= 1

�cB1
�
�0
�
and lending scale

of D =
�
A�
� 1
1�� R

�
�0
� �1
1�� : Substitute these into equation 31, we �nd the mapping � = f

�
�0
�
is determined

by

� � �L
�H � �

� =
1� p
p

0@ !

R
�
�0
� � G�

A�
� 1
1��

R
�
�0
� �
1��

1A : (86)

The mapping has the following properties. First, f 0 > 0: That is because the left hand side of (86) is

increasing function of �; while the right hand side is an decreasing function of R; and, as R0
�
�0
�
< 0; an

increasing function of �0: Second, if G > !D
�
1
�cB1 (�L)

�
; then f (�L) < �L: That is because the right hand

side of (86) has the same sign as !D
�
R
�
�0
��
�G and hence is negative at �0 = �L if G > !D

�
1
�cB1 (�L)

�
:

Third, f (�H) < �H : That is because at �
0 = �H ; the value on the the right hand side of (86) is �nite. An
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equilibrium is a �xed point of mapping f : From Figure 1B above, if G 2
�
!D

�
1
�cB1 (�L)

�
; ' (��3)

�
; the

mapping has two �xed points and can hence be illustrated as follows.

Figure B2: When there are two equilibrium, the one in which � has a smaller value is unstable.

It is straightforward to see that the Equilibrium 2 of Figure 1B, in which � has a smaller value, is unstable,

as at that point f 0 > 1; while the Equilibrium 1 is stable.

49


