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Abstract

The VIX futures curve is most often in contango but displays backwardation during unfavor-
able market conditions. We construct an explanation based on the notion of stochastic orders
of volatility uncertainty — meaning that investors view short-dated volatility uncertainty as
less likely to take on larger values than long-dated volatility uncertainty — under all pricing
measures. We complement this theory of volatility uncertainty with tractable equity price pro-
cesses whose paths consist of continuous shocks interspersed with jump discontinuities, the latter
reflecting disaster uncertainty with time-varying disaster probability.
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1 Introduction

The VIX futures curve is depicted by connecting prices of futures contracts with different expiration

dates. Much like the interest-rate yield curve, it is displayed on a graph where the X-axis represents

expiration dates, and the Y-axis represents the VIX futures prices. The underlier is the VIX index

created by the Chicago Board Options Exchange (CBOE) and is compiled from traded S&P 500

index option prices. The VIX is itself not directly traded. It is gauged by the risk-neutral expectation

of a convex function of price fluctuations in the S&P 500 index over the succeeding 30 days.

More often than not, the VIX futures curve consists of the nearest maturity contract having

the lowest price and each farther dated contract having a higher price than the previous contract.

In other words, the VIX futures curve is typically in contango, that is, upward sloping. This means

that long VIX futures positions suffer from roll cost and shorts collect positive carry.

The shape of the VIX futures curve, and its movements through time, is puzzling to practitioners

and intensely debated in blog conversations and financial opinion pieces.

As such, two questions are at the core of this paper: What could be the economic rationale for

the VIX futures curve being mostly in contango? What could be a justification for the curve to

invert to backwardation? To our knowledge, there is no widely accepted economic explanation in

the academic journals, and we are not aware of a lead consensus among practitioners.

Salient facts. We illustrate a feature of the equity volatility markets, pertinent to the developed

theory, in the following table on VIX futures prices for the six nearest contracts.

Date T1 T2 T3 T4 T5 T6

11/06/2017 10.8 12.2 13.4 14.1 14.7 15.3

10/16/2008 63.9 42.8 35.5 34.7 34.3 32.7

While the VIX futures curve is in contango on 11/06/2017, the VIX futures curve is in back-

wardation during the financial crisis (10/16/2008). The interpretation of the inversion is that (i)

investors are preoccupied with disaster-type equity and volatility uncertainties and (ii) investors

anticipate continued commotion in equity and volatility markets.

In line with the theoretical treatment, our empirical analysis shows that, the VIX futures curve

has been in contango on 82% of the days since inception (our sample is 04/25/2006 to 12/31/2019).
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Further analysis indicates that the futures curve on the VSTOXX — the volatility index on STOXX

50 equity index — is in contango for 76% of the days between 10/22/2010 and 09/23/2021.

Theoretical explanation. In order to help decipher the sufficient conditions for when the VIX

futures curve will be in contango, we exploit the notion of volatility uncertainty being “stochastically

smaller” in the near term versus the longer term, for all pricing measures. Suppose one uses the

random variable Z̃Tn (for n = 1, 2, . . .) to reflect the valuation at date Tn of volatility uncertainty

over [Tn, Tn + ~], for contract parameter ~=30 days. Then, the notion of stochastically smaller,

from the standpoint of current date t < T1, refers to the situation in which the probability of Z̃T1

exceeding a threshold value z, is lower than or equal to the probability of Z̃T2 exceeding the same

threshold z, and this disparity is true for all z (under all pricing measures).

Although the notion that short-dated volatility uncertainty is less likely to take (relatively)

larger values is admittedly abstract, we show its promise in describing the intertemporal realities

embedded in the VIX futures curve. We examine the implications of this model-detached approach

to order volatility uncertainty when these restrictions are framed in the context of workhorse models.

In one of our models, discontinuities in volatility can be correlated with disaster-type price jumps.1

Motivated by our empirical depictions, we combine our approach with a model in which the

equity price process has both diffusive volatility risks and jump risks (reflecting a disaster compo-

nent). These equity dynamics encapsulate variability in the probability of disasters. The model

reveals that the VIX futures curve is in contango when market participants perceive disaster risks

and volatility risks to be not pronounced relative to their respective long-run mean level.

In essence, we consider a mechanism by which the workings of the theoretical restrictions align

with near-term volatility uncertainty being ordered as stochastically smaller. If the VIX were to

increase in response to economic anxieties, it would rearrange the stochastic ordering of volatility

uncertainty and, accordingly, the VIX futures curve may slide into backwardation.

Aiming for realism in our theoretical explanation of the VIX futures curve, we adhere to how the

payoff underlying the VIX is formulated by the CBOE. Given that the S&P 500 option portfolios

that determine the VIX settlement values are not preannounced by the CBOE, it is not possible

to explain the VIX futures curve using storage or carry arguments.

1Volatility jumps can be economically relevant: High VIX values are associated with backwardation in VIX futures
curves, and realizations of unfavorable economic states are connected with volatility jumps to the upside.
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2 Volatility data and theory-relevant facts

The understanding of equity index volatility has been widened by studies using the VIX volatility

index.2 In this paper, we answer two questions about movements in the VIX futures curve. First,

what could be the channels that reconcile the VIX futures curve being predominantly in contango?

Second, why does a pattern of backwardation emerge during periods of market distress?

Our theoretical analysis is motivated by the empirical evidence on intertemporal futures price

relations. Hence, first, we present the empirical facts.

Fact 1. VIX futures are in contango in (approximately) 82% of the entries in our

daily sample. We exploit daily price observations on VIX futures from consecutive maturities,

over the sample period of 04/25/2006 to 12/31/2019. Our data, which is obtained from the CBOE,

contains the settlement prices of VIX futures. The start date (04/25/2006) coincides with daily

futures prices being available for at least six maturities.3

Our depictions exploit a panel of futures prices across 3,447 daily observations. Table 1 reports

the essential aspects of the VIX futures curve, combining information from the six nearest-maturity

contracts. We denote the futures price at time t for the n-th futures contract by F
(n)
t .

We extract information on the slope of the futures curves measured across maturities as follows:

Slope
(n)
t = log(

F
(n)
t

F
(1)
t

), for n = 2, . . . , 6. (1)

The average log(
F

(2)
t

F
(1)
t

) is 5.2% and 1
{Slope

(2)
t >0}

— which represents the fraction of observations with

log(
F

(2)
t

F
(1)
t

) > 0 — is 81.2%. This baseline finding holds along other points of the futures curve. For

example, the average value of log(
F

(6)
t

F
(1)
t

) is 13.6%, and it is positive on 82% of days. Our evidence

can be interpreted to imply that VIX futures are in backwardation only occasionally.

2These contributions include, among others, Grünbichler and Longstaff (1996), Carr and Wu (2006), Duan and
Yeh (2007), Carr and Lee (2008), Broadie and Jain (2008), Zhu and Zhang (2007), Zhu and Lian (2011), Lin and
Chang (2010), Cont and Kokholm (2013), Mencia and Sentana (2013), Bakshi, Madan, and Panayotov (2015), Park
(2016), Eraker and Wu (2017), Johnson (2017), Bardgett, Gourier, and Leippold (2019), Cheng (2019), Eraker and
Yang (2020), Hu and Jacobs (2020), and Huang, Schlag, Shaliastovich, and Thimme (2020).

3The daily open interest and volume in nearby VIX futures contracts is fairly high. This evidence is presented in
Internet Appendix (Table I.1). Volatility uncertainty is actively traded in many forms (Mixon and Onur (2018)).
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The tapering of the VIX futures curve can be inferred from the entries in Table 1 (Panel A).

This is because the average value of log(
F

(6)
t

F
(5)
t

) is 1.4%, as opposed to the average log(
F

(2)
t

F
(1)
t

) of 5.2%.

Table 1 (Panel B) reinforces the contango feature based on the following daily regression, pooling

data on VIX futures prices across consecutive maturities:

log(F
(n)
t ) = αt + βt log(T (n)

t ) + ǫ
(n)
t , for n = 1, . . . , 6, and t = 1, . . . ,T, (2)

where T (n)
t denotes the remaining term-to-maturity (in days) corresponding to futures contract n.

The takeaway is that the hypothesis of the VIX futures curve being flat (i.e., βt = 0) is rejected.

Fact 2. The VIX futures curve exhibits backwardation during stressful market states.

Table 2 examines the daily slope of the VIX futures curve in conjunction with daily data for the

VIX index (Panel A) and for S&P 500 equity index returns (Panel B).

When the VIX is below 18, it is rare for the VIX futures curve not to be in contango. In

contrast, the likelihood of backwardation when the VIX is 30 or more is substantially higher. The

upshot is that the slope of the VIX futures curve, in particular, whether upward or downward

sloping, varies with the VIX. This documented variation in the sign of the slope of the VIX futures

curve poses a challenge on theory to reconcile and bears on the design of volatility models.

Using daily S&P 500 equity index returns to represent the market state produces a likewise

coherent picture. That is, the shift from contango to backwardation is a phenomenon tied to the

realization of unfavorable economic states.

The noteworthy angle from daily S&P 500 index returns is that the VIX futures curve exhibits

backwardation when there are large movements of the S&P 500 index to both the downside and

the upside. First, the mean slopes are negative when S&P 500 daily returns are less than −3.5%

or greater than 3.5%. Second, 1
{Slope

(n)
t >0}

is less than 13%, implying that these market states are

predisposed toward backwardation of the VIX futures curve.

The contango feature of volatility futures is preserved for the European VSTOXX volatility

index over 10/22/2010 to 09/23/2021. This evidence is shown in Internet Appendix (Tables I.2

and I.3).
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Fact 3. Changes in the slope of the VIX futures curve do not move in tandem with

changes in the slope of the volatility curve for at-the-money (ATM) S&P 500 index

options. This exercise is motivated by the consistent pricing of VIX products and options on the

S&P 500 equity index. Our focus on ATM options arises from the known correspondence between

equity volatility and ATM equity option prices (e.g., Brenner and Subrahmanyam (1988)).

We build the following time-series of daily changes, for n = 2 and n = 4:

∆Slope
(n)
t,spx options ≡ log(

IV
(n)
t,spx

IV
(1)
t,spx

)− log(
IV

(n)
t−1,spx

IV
(1)
t−1,spx

) and (3)

∆Slope
(n)
t,vix futures ≡ log(

F
(n)
t

F
(1)
t

)− log(
F

(n)
t−1

F
(1)
t−1

), (4)

where IV
(n)
t,spx is the average of the implied volatility of ATM puts and calls on the S&P 500 index.

Table 3 reports the joint frequencies of the sign of ∆Slope
(n)
t,vix futures and ∆Slope

(n)
t,spx options.

The sign of ∆Slope
(n)
t,vix futures is not the same as that of ∆Slope

(n)
t,spx options for about 36% of the

days. Our findings suggest that there may be variables that exert influence on the slope of the VIX

futures curves, apart from those that affect the slope of the ATM volatility curves.

Fact 4. Daily VIX time-series is mean-reverting with a Hurst exponent of 0.37. Such

a data attribute bears on our theory and on intertemporal assessments of volatility uncertainty.

We use the modified rescaled range analysis of Lo (1991) (and Lo and MacKinlay (2011, Chapter

6.3.1)) to measure long-range dependence in the VIX. Letting Xj ≡ log(
VIXj

VIXj−1
) denote the daily

log change, we consider the expanding windows {1 → ℓ} and construct the following:

R/S{1→ℓ} ≡ 1

σ̂ℓ[q]
( max
1≤k≤ℓ

k∑

j=1

{Xj −Xℓ} − min
1≤k≤ℓ

k∑

j=1

{Xj −Xℓ}), (5)

where Xℓ =
1
ℓ

∑
j Xj and σ̂2

ℓ [q] = σ̂2
x+2

∑q
j=1(1− j

q+1) γ̂j (reflecting devolatilization). The optimal

lag q is automatically selected and σ̂2
x and γ̂j are the estimates of variance and autocovariance.

Using an OLS regression, we estimate the model log(R/S{1→ℓ}) = constant+H log(ℓ)+ ǫℓ. The

concept of an anti-persistence series maps to an estimate of the Hurst exponent H between 0 and

0.5. We note that H is the power law exponent in R/S{1→ℓ} = econstant × ℓH.
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Our estimate of H of 0.37 (standard error = 0.015) indicates that any downward or upward

trend in the VIX will eventually be restored to its long-run parity level. In other words, VIX is

mean-reverting and behaves as a bounded random variable.

Fact 5. Two factors describe 99.78% of the cross-sectional variation in daily VIX

futures prices. Principal component analysis implies that the first (respectively, second) principal

component explains 97.42% (respectively, 2.36%) of the common variation in VIX futures prices.4

Each of the futures contracts loads equally and positively on the first principal component.

Hence, the first principal component is akin to an average factor. In contrast, shorter (respectively,

longer) maturity futures contracts load positively (respectively, negatively) on the second principal

component. Therefore, the second principal component can be interpreted as (minus of) the slope

factor. Fact 5 motivates our consideration of a two-factor driver of the VIX futures curve.

Fact 6. Shorting the VIX futures contract with the most pronounced contango collects

the most positive carry. The last column of Table 4 presents the excess return of a dynamically

implemented carry strategy that shorts (goes long) the VIX futures contract that exhibits the most

(least) pronounced contango. Specifically, each week t (instead of each day), we rank the available

VIX futures contracts in ascending order by value of
F

(n)
t

F
(n−1)
t

, for n = 1, . . . , 6.

For each of the contracts so binned, we first compute the return (summarized in the first six

columns of Table 4) of the fully collateralized (long) futures position over the subsequent week.

The positions are dynamically rebalanced for each of 743 weeks (5/23/2006 to 8/11/2020).

In the construction of the carry, we assign 1/2 dollar to the long and the short legs. The average

weekly (respectively, annualized) return to the carry strategy is 0.44% (respectively, 22.88%) with

a standard deviation of 3.10% (respectively, 22.35%). The 95% bootstrap confidence intervals for

the average carry returns do not bracket zero and are statistically significant. The carry strategy

yields an annualized Sharpe ratio of 1.013.

Our description of the empirical data provides the anchoring groundwork to map the contango

and backwardation of the VIX (and VSTOXX) futures curve to a theoretical framework.

4This analysis is presented in the Internet Appendix (Table I.4).
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3 A theory of VIX futures contango and backwardation

The VIX is not directly traded or storable for delivery. This section formulates a problem to depict

the slope of the VIX futures curve, subject to the correct pricing of claims on the VIX and claims

on the S&P 500 equity index. Our solution to the problem hinges on the properties of random

variables, at two different dates, being “stochastically smaller or larger.” Then, we employ this

notion of “stochastically smaller or larger” in conjunction with models of equity index prices.

The substance of the model analysis is to associate the state of the VIX futures curve to

intertemporal perceptions about the probability of disasters and return volatility. Our point of

departure is the link of time-varying disaster probabilities to the VIX futures curve and subsequent

volatility uncertainty.

3.1 Uncovering the restrictions of VIX futures contango and backwardation

In what follows, let (Ω,I, (It)0≤t≤T ,P) be a filtered probability space, with T being a fixed, fi-

nite time. The filtration (It)0≤t≤T satisfies the usual conditions. All stochastic processes with a

subscript t are It-measurable. The processes are assumed to be right continuous with left limits.

Here, P denotes the physical probability measure. We denote the equivalent martingale (pricing)

measure consistent with no-arbitrage and the pricing kernel Mt by Q. Since markets are not

complete, Q is not unique. Fixing notation, EQ(•|It) is the expectation under Q, conditional on

It.

We denote by St the price, at time t, of the S&P 500 equity market index. Hereon, we assume

that St is a semimartingale. Let the interest rate be r, a constant.

Furthermore, we denote by Ht+~
t the price, at time t, of the S&P 500 futures contract, with

maturity at t+ ~. Then, by the cost of carry relation, Ht+~
t = er ~ St.

Problem 1 (Value of VIXt) Determine, as per the CBOE (2006) white paper,

VIXt ≡
√

EQ

(
{− 2

~
} log(

St+~

Ht+~
t

)
∣∣∣It
)
, with ~ ≡ 30

365
. (6)

The random variable {−2
~
} log( St+~

Ht+~
t

) is convex in St+~, and it has nonnegative expectation. �
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The CBOE circumvented Problem 1’s reliance on the exact nature of It and a model for St+~

by approximating VIX2
t through a portfolio of traded index put and call options.5

Denote the nonnegative random variables, representing volatility uncertainty, pertaining to

maturity dates T1 < T2, as follows (we suppress the dependence of Z̃Tn on ~):

Z̃T1 ≡ EQ({− 2

~
} log( ST1+~

HT1+~
T1

)
∣∣∣IT1) and Z̃T2 ≡ EQ({− 2

~
} log( ST2+~

HT2+~
T2

)
∣∣∣IT2). (7)

We denote by F T
t the VIX futures price, at time t, with expiration at T . Since F T

t is a martingale

under Q, we have F T
t = EQ(F T

ℓ

∣∣It), for all t and ℓ satisfying t ≤ ℓ ≤ T .

Problem 2 (VIX futures curve) The problem entails establishing restrictions under which

F T1
t is less than, or greater than, F T2

t for VIX futures maturities T1 < T2, (8)

where F T
t = EQ(VIXT

∣∣∣It) = EQ(

√
EQ({−2

~
} log( ST+~

HT+~
T

)
∣∣∣IT )

∣∣∣It). (9)

Equation (9) holds because at expiration F T
T = VIXT . �

Equation (9) of Problem 2 does not enable model-free tractability. The obstacle is that Z̃Tn is the

time Tn price of yet another subsequent payoff transpiring between Tn and Tn+~, for n = 1, . . . , N .

However, a general, as opposed to parametric, property that offers cues to the shape of the VIX

futures curve can be constructed based on Ross (1984, Chapter 9.1). We pursue this analysis to

ascertain whether, and when, the VIX futures curve may be in contango or backwardation, and we

emphasize economic interpretations.

Mindful of our goals, denote the distribution function of Z̃Tn , under the pricing measure Q, as

GTn . Assume that EQ(Z̃Tn

∣∣It) is finite for all n = 1, . . . , N . Suppose

ProbQ[Z̃T1 ≥ z] ≤ ProbQ[Z̃T2 ≥ z], for all z ∈ (0,∞). (10)

Then we say that Z̃T1 is stochastically smaller than Z̃T2 , written Z̃T1 ≤st Z̃T2 , for T1 < T2.

5Specifically, VIX2
t ≈ 2 er~

~
(
∫

K<Ht+~
t

put
spx
t

[K;t+~]

K2 dK +
∫

K>Ht+~
t

call
spx
t

[K;t+~]

K2 dK) for S&P 500 index options with

strike price K and remaining term-to-maturity ~ = 30
365

. The VIXt is a widely respected (model-free and forward-
looking) measure of return dispersion over the period t to t+ ~.
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Result 1 If Z̃T1 ≤st Z̃T2 , for Z̃T1 and Z̃T2 defined in equation (7), then

(a) EQ(Z̃T1

∣∣It) ≤ EQ(Z̃T2

∣∣It). (11)

(b) EQ(

√
Z̃T1

∣∣∣It)
︸ ︷︷ ︸

≡ F
T1
t

≤ EQ[

√
Z̃T2

∣∣∣It]
︸ ︷︷ ︸

≡ F
T2
t

. (12)

Proof: See Appendix A. �

In the setting of Result 1, Z̃Tn captures the time Tn price of dispersion expected to prevail over

[Tn, Tn + ~]. In this light, what does it mean economically that Z̃T1 is stochastically smaller than

Z̃T2? The intuition is that the relation ProbQ[Z̃T1 ≥ z] ≤ ProbQ[Z̃T2 ≥ z] implies that Z̃T1 is less

likely than Z̃T2 to take on larger values, where the notion of “large” means any value greater than

z, and this is true for all values of z.

The implication that Z̃T1 ≤st Z̃T2 is consistent with EQ(Z̃T1

∣∣It) ≤ EQ(Z̃T2

∣∣It) enables sim-

plifications because EQ(
√•
∣∣It) is not analytically tractable, even under model parameterizations.

Additionally, our approach, as seen in the sequel, helps to trace the macroeconomic sources that

determine the shape of the VIX futures curve.

Shaked and Shantikumar (2006, Chapter 5) introduce the notion of the Laplace transform order,

denoted by Z̃T1 ≤Lt Z̃T2 . If EQ(e−u Z̃T1

∣∣It) ≥ EQ(e−u Z̃T2

∣∣It), for u ∈ (0,∞), then they postulate

that Z̃T1 is smaller than Z̃T2 in the Laplace transform order. Importantly, Z̃T1 ≤Lt Z̃T2 =⇒

EQ(Z̃T1

∣∣It) ≤ EQ(Z̃T2

∣∣It).

Due to a representation by Schürger (2002), one may, thus, express

√
Z̃T1 =

1

2
√
π

∫ ∞

0

1− e−u Z̃T1

u3/2
du. Hence, EQ(

√
Z̃T1

∣∣It) =
1

2
√
π

∫ ∞

0

1− EQ(e−u Z̃T1

∣∣It)
u3/2

du. (13)

Therefore, the Laplace transform order can potentially be connected to EQ(

√
Z̃T1

∣∣It) ≤ EQ(

√
Z̃T2

∣∣It).

We focus on the stochastic order ≤st, instead of ≤Lt, as the restriction of EQ(Z̃T1

∣∣It) ≤

EQ(Z̃T2

∣∣It) is often tractable to validate, and because it is revealing about the intertemporal for-

mation of beliefs in the market for volatility trading. We investigate whether the VIX contango

feature is tied to the mean of Z̃Tn , while not discarding a role for higher-order moment effects.
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3.2 Disaster probability, return volatility, and VIX futures curve

In this section, we consider a plausible stochastic structure with the aim of uncovering clearer

analytics. Our featured ingredients of volatility uncertainty Z̃Tn , for n = 1, . . . , N , are time-varying

probability of disasters and stochastic return volatility.

The following features of disaster-type risks and volatility motivate the considered models:

1. Changes in the slope of the VIX futures curve are predictable. Predictors constructed from

VIX and S&P 500 options (e.g., jump risks and butterfly spreads inferred from VIX options

and quadratic variation of the S&P 500 returns) forecast changes in the slope of the VIX fu-

tures curve. See the evidence in Table I.5 (Internet Appendix (Section A.1)). These predictors

can be viewed as encoding information about disaster risks or return volatility risks.

2. 30-day ATM implied volatilities extracted from S&P 500 index options are more pronounced

than their 60-day counterparts (that is, bend downwards) on 46% of the days in our sample.

Furthermore, ATM implied volatilities exhibit time-variation.

3. Volatility uncertainty Z̃T generically relates to the price of local time (essentially strike de-

pendent volatility) and the price of jumps across the strike. Internet Appendix (Section A.2)

elicits the intuition that, at time t, investors draw an intertemporal distinction between the

pricing of local time and the pricing of jumps across the strike. Our model parameterizes

these links in a parsimonious way and makes the channels we seek analytically transparent.

Proceeding, the salient aspect of the ensuing model is that it incorporates time-varying prob-

ability of disasters λt. With EQ(•) denoting unconditional expectation, the equity index price

dynamics is

Size of disasters: x follows (unspecified) i.i.d. distribution under Q (14)

Equity index price :
dSt

St−
= r dt+

√
vt dB

Q,s
t + (ex − 1) dNQ

t − λt E
Q(ex − 1)dt (15)

Poisson jump : dNQ
t =





1 with probability λt dt

0 with probability 1− λt dt
(16)

Diffusive variance : dvt = (θvol − κvol vt) dt + σvol
√
vt dB

Q,v
t (17)

Disaster probability : dλt = (θλ − κλ λt) dt + σλ
√

λt dB
Q,λ
t . (18)
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The standard Brownian motion B
Q,s
t is correlated with B

Q,v
t , whereas the standard Brownian

motion B
Q,λ
t is uncorrelated with all other sources of risk.6

Complementing Result 1, it is seen (see Appendix B) that, for generic futures maturity T ,

Z̃T = 2 {EQ(ex − 1− x)}︸ ︷︷ ︸
≥ 0 (Jensen’s inequality)

[
θλ
κλ

+
(1− e−κλ~)

~κλ
(λT−

θλ
κλ

)]+
θvol
κvol

+
(1− e−κvol ~)

~κvol
(vT−

θvol
κvol

). (19)

In this model, disaster probabilities and return variance are the source of the variation in Z̃T . Thus,

the futures price F T
t = EQ(

√
Z̃T

∣∣∣It) inherits a two-factor structure (in line with Fact 5).

What, then, are the influences that determine intertemporal futures price relations? If Z̃T1 is

stochastically smaller than Z̃T2 , that is, Z̃T1 ≤st Z̃T2 , then it must hold (using the known analytical

form of EQ(vT

∣∣It) and EQ(λT

∣∣It); see Appendix B) that, for T1 < T2,

0 ≥

from equation (11) of Result 1︷ ︸︸ ︷
EQ(Z̃T1

∣∣It) − EQ(Z̃T2

∣∣It) implying, in turn, by equation (19), that

= 2{(EQ(ex − 1− x)︸ ︷︷ ︸
≥ 0

(1− e−κλ~)

~κλ︸ ︷︷ ︸
>0

} {e−κλ(T1−t) − e−κλ(T2−t)}︸ ︷︷ ︸
>0

(λt −
θλ
κλ

)

+
(1− e−κvol ~)

~κvol︸ ︷︷ ︸
>0

{e−κvol(T1−t) − e−κvol(T2−t)}︸ ︷︷ ︸
>0

(vt −
θvol
κvol

). (20)

Therefore, in light of Result 1 (equation (12)), it holds that, for EQ(Z̃T1

∣∣It)− EQ(Z̃T2

∣∣It) < 0,

Shape of Futures Curvet︸ ︷︷ ︸
F

T2
t − F

T1
t

=





Contango if λt <
θλ
κλ

and vt <
θvol
κvol

Backwardation if λt >
θλ
κλ

and vt >
θvol
κvol

.
(21)

The conceptual implication is that when investors perceive time t volatility or disaster risk to be

more pronounced relative to a long-term norm (i.e., the long-run reversion levels θvol
κvol

and θλ
κλ

), then

6To develop the implications of Result 1, we draw on the time-varying intensity models considered in Santa-Clara
and Yan (2010), Aı̈t-Sahalia and Jacod (2012), Gabaix (2012), Wachter (2013), and Aı̈t-Sahalia, Cacho-Diaz, and
Laeven (2015), combined with diffusive volatility. The role of volatility uncertainty is analyzed from alternative
perspectives in Andersen, Bollerslev, Diebold, and Labys (2003), Andersen, Bollerslev, and Diebold (2007), Todorov
(2010), Drechsler and Yaron (2011), Bates (2012), Dew-Becker, Giglio, Le, and Rodriguez (2017), Amengual and Xiu
(2018), Aı̈t-Sahalia, Karaman, and Mancini (2020), Eraker and Yang (2020), Lochstoer and Muir (2020), Aı̈t-Sahalia,
Li, and Li (2021), and Ai, Han, and Xu (2021).
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shorter-dated VIX futures contracts are more expensive than longer ones and the futures curve is

backwardated. This aspect of our formalization is founded in our empirical observations.

If λt <
θλ
κλ

and vt >
θvol
κvol

(or the reverse), then the distinction between contango and backwar-

dation is established by prevailing market conditions. In this case, the net quantitative effect can

be ascribed to diffusive volatility and disaster probability departing from their respective long-run

levels. The support for this view can be gleaned from Table 2 (Panel A), which provides the pattern

on contango and backwardation in relation to the realizations of VIX higher than 30.

The theory of uncertainty about disaster probabilities and return volatility is an attempt to

reconcile observed VIX futures prices. Our theory sheds light on the effects of economic expectations

in the market for volatility trading.

Our model approach tells us that investors may perceive the pricing of volatility and disaster

risks to be less open-ended over shorter-dated VIX futures contracts, as opposed to longer-dated

contracts. In other words, the projections about the outlook for volatility and disaster risks may

become more uncertain the further into the future one examines. If adverse economic conditions

perturb this projection, then the VIX futures curve can slip to backwardation. Our theory implies

that when negative sentiment about equities recedes, the VIX futures curve favors contango.

3.3 Extension: Disaster probability, and jumps in both price and volatility

Consider the following theoretical environment, which modifies the model of Duffie, Pan, and

Singleton (2000) to incorporate stochastic intensity. The details are in Appendix C.

Equity index price :
dSt

St−
= r dt+

√
vt dB

Q,s
t + (exs − 1) dNQ

t − λt E
Q(exs − 1)dt (22)

Joint Poisson jump : dNQ
t =





1 with probability λt dt

0 with probability 1− λt dt
(23)

Disaster probability : dλt = (θλ − κλ λt) dt + σλ
√

λt dB
Q,λ
t (24)

Size of additive jumps in vt: xv follows spectrally positive i.i.d. distribution (under Q) (25)

Size of percentage disasters: xs has an i.i.d. distribution conditional on xv (under Q) (26)

Variance : dvt = (θvol − κvolvt)dt+ σvol
√
vtdB

Q,v
t + xv dNQ

t .︸ ︷︷ ︸
jumps in vt

(27)
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For this model, in which xs and xv can be correlated, we derive the following (for T1 < T2):

0 ≥

from equation (11) of Result 1︷ ︸︸ ︷
EQ(Z̃T1

∣∣It) − EQ(Z̃T2

∣∣It)

= − EQ(xv)(1− e−κvol ~)

~κvol
{e−κvol(T1−t) − e−κvol(T2−t)}( θλ

κλ κvol
)

︸ ︷︷ ︸
≡ Term 1 < 0

− EQ(xv)(1− e−κvol ~)

~κvol

[{e−κvol(T1−t) − e−κvol(T2−t)} − {e−κλ(T1−t) − e−κλ(T2−t)}]
κvol − κλ︸ ︷︷ ︸

≡ Term 2 < 0

(λt −
θλ
κλ

)

+
EQ(xv)

~κvol
{(e

−κvol~ − e−κλ~)

(κvol − κλ)
+

(1− e−κλ~)

κλ
} (e−κλ(T1−t) − e−κλ(T2−t))

︸ ︷︷ ︸
≡ Term 3 > 0

(λt −
θλ
κλ

)

+ 2 EQ(exs − 1− xs)︸ ︷︷ ︸
≥0

(1− e−κλ~)

~κλ
(e−κλ(T1−t) − e−κλ(T2−t))︸ ︷︷ ︸

>0︸ ︷︷ ︸
≡ Term 4 > 0

(λt −
θλ
κλ

)

+
(1− e−κvol ~)

~κvol
(e−κvol(T1−t) − e−κvol(T2−t))

︸ ︷︷ ︸
> 0

(vt −
θvol
κvol

). (28)

Our quantitative evaluations back a finding that Term 4 (related to the jumps in the equity index

price) dominates Term 2 and Term 3 (the terms related to jumps in vt). The intuition is that

disaster-type price jumps exert a stronger effect on the slope of the VIX futures curve.7

Thus, the notion of Z̃T1 being stochastically smaller than Z̃T2 (that is, E
Q(Z̃T1

∣∣It) ≤ EQ(Z̃T2

∣∣It))

is preserved when λt is below θλ
κλ

and vt is below θvol
κvol

.8 These theoretical restrictions align with

the VIX futures curve being in contango.

3.4 Examining the empirical implications of the theory using weeklys

If λt <
θλ
κλ

and vt <
θvol
κvol

, then our theory implies that the VIX futures curve would be in contango.

In this section, we examine the confirmatory instances of this theory by constructing a measure of

risk-neutral disaster probability from weekly put options (the weeklys) on the S&P 500 index.

In Merton (1976), the risk-neutral probability of one significant event over an infinitesimal ∆t

is λt∆t, while the probability of two or more jumps is negligible. We associate this event to a

7The work of Todorov and Tauchen (2011) and Bandi and Reno (2016) implies that both the equity price and its
volatility jump (that is, volatility can jump both down and up).

8Recognize that Term 1, as defined in equation (28), is negative.
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large equity decline — a disaster — over Friday to Friday. Using weeklys on the S&P 500 index,

we measure the risk-neutral disaster probability as follows:

λt ∆t︸ ︷︷ ︸
Risk-neutral disaster probability

(∆t = 1/52 (one week))

≈ EQ(1
{
St+∆t

St
−1 < −kdisaster}

∣∣It)

≈ er∆t × putt[K
disaster +∆K] − putt[K

disaster −∆K]

2∆K
, (29)

for small strike price increment ∆K and Kdisaster

St
− 1 = −kdisaster < 0, where kdisaster = 0.08 or 0.10.

On average, a disaster more severe than 8% (respectively, 10%) maps to a put delta of −0.51%

(respectively, −0.27%).

There are 519 weekly cycles in our sample of put options and VIX futures. The first (last)

cycle consists of the closing put prices on 1/7/2011 (12/11/2020) for options expiring on 1/14/2011

(12/18/2020). In line with our daily evidence, the VIX futures curve is in contango for 84% of the

Fridays. This depiction relies on the front-month and second-month VIX futures contracts.

3.4.1 Empirical hypothesis

To assess the link between the theory (that is, equation (21)) and empirics, we consider an approach

for which data can be constructed. Whereas we have utilized, known at time t, put prices to

synthesize the probability of an unlikely event, the model-free measurement of vt is not feasible (to

our knowledge).

Guided by such an implication, we formulate, and empirically investigate, the following hypoth-

esis:

1{slope of the VIX futures curvet>0} − {1
{λt<

θλ
κλ

}
and 1

{vt<
θvol
κvol

}
}

︸ ︷︷ ︸
≈ measured by 1

{λt<
θλ
κλ

}

= 0. (state-by-state) (30)

In implementation, we proxy the occurrence of 1
{λt<

θλ
κλ

}
and 1

{vt<
θvol
κvol

}
by 1

{λt<
θλ
κλ

}
. There

would be a mismatch with the theory, if there is a substantial number of instances of the VIX futures

contango (respectively, backwardation) deviating from the occurrence of λt < θλ
κλ

(respectively,
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λt >
θλ
κλ

). That is, the theory would be undermined if short-dated volatility uncertainty is smaller

than its long-dated counterpart while the VIX futures curve contradicts by being backwardated.

3.4.2 Assessing the qualitative and quantitative model implications

Qualitatively, our theory suggests that high disaster probabilities coincide with backwardation.

We test this restriction in a logistic regression setting. Suppose 1{slope of the VIX futures curvet>0} is

consistent with a Bernoulli probability function and takes a value of 1 when in contango (with

probability qt) and 0 (when in backwardation) with probability 1−qt. Our empirical specification

is the following: qt = (1 + e
−{aλ+bλ log( 1

λt
)}
)−1. The takeaway from Table 5 (Panel A) is the

rejection of bλ = 0 (based on p-values of the z-statistics). The noticeably positive bλ estimates

affirm a qualitative implication of our theory of volatility uncertainty. Specifically, low values of λt

map to VIX futures contango.

On the other hand, the contingency table in Table 5 (Panel B) bears on the quantitative

implication of the theory: Joint counts of the shape of the VIX futures curve and realizations of

λt are directionally aligned for 90% (76%+14%) of the weekly observations. The economic states

when λt is higher, or lower, than its long-term mean can be visualized from the plot of demeaned

log(λt) in the Internet Appendix (Figure I.1). Complementing this evidence, Table 5 (Panel C)

shows the features of the extracted λt, and Table 5 (Panel D) provides estimates of the noncentral

chi-square transition density function of λt (as modeled in equation (18)).

3.4.3 Bootstrap confidence intervals for model consistency

We present the 95% confidence intervals (shown as ⌊.⌋ in Panel D) for the contingency table,

obtained from 5,000 bootstrapped series of a bivariate VAR(1) model for yt ≡ [log(λt), log(
F

(2)
t

F
(1)
t

)]′,

selected by the Bayesian information criterion. As in Bauer and Hamilton (2018), we resort to

estimating yt = α + βyt−1 + ǫt. Then, we jointly bootstrap the residuals and construct yb
t =

α̂+ β̂yb
t−1 + ǫbt for b=1,. . . ,5000.

Evidenced by the bootstrap confidence intervals, the joint counts of model consistency appear

robust to estimation noise in mean disaster probabilities and persistence in the slopes of the VIX

futures curve. Overall, our evidence, based on inferring λt from the price of deep OTM puts on

weeklys, is supportive of the economic mechanism that underlies VIX futures contango.
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3.5 Stochastic orders of equity volatility uncertainty and alternative approaches

The mechanism underlying stochastic orders of volatility uncertainty can also be studied under the

altered modeling approach of (i) a constant disaster probability in the equity price process and

(ii) an equity return volatility structure with two diffusive components. We frame this question in

Internet Appendix (Section A.4), utilizing the model of Bates (2000). Our analysis implies that

the sign of EQ(Z̃T1

∣∣It)−EQ(Z̃T2

∣∣It) depends on whether the current value of the two equity return

volatility components are below, or above, their respective long-run mean levels. Additionally,

in this case, the switch from contango to backwardation (or the reverse) is not restricted by the

distributional features of equity price jumps.

One may also examine the mechanism of stochastic orders of equity volatility uncertainty under

an equilibrium model. In this regard, our models complement the parametric modeling of consump-

tion growth — under the real-world and risk-neutral probability measures — in Eraker and Yang

(2020). The variance of consumption growth is parameterized by a diffusive volatility component

and a jump component with stochastically evolving jump intensity. Essential to Eraker and Yang

(2020) is a pricing kernel with (i) diffusive risks and (ii) jump risks accompanied by stochastic

jump intensity. Their approach is to derive the form of the VIX in an equilibrium framework

while capturing features of VIX option prices. The connecting aspect of our paper is to identify

intertemporal restrictions, namely, the stochastic orders of equity volatility uncertainty, such that

the VIX futures curve can transition between contango and backwardation.

4 Conclusion

VIX futures are said to be in contango when progressively longer-dated VIX futures contracts trade

at progressively higher prices. While textbook treatments recognize that investment assets are in

contango due to a cost-of-carry relation arising from a no-arbitrage condition, it is far from settled

why VIX futures — which are hedging instruments — should be upward sloping with maturity.

We feature empirical facts, which also serve as the background for our theory. First, VIX futures

are in contango around 82% in our daily sample. Second, despite being on average in contango,

VIX futures curve exhibits backwardation during periods of heightened economic uncertainties.

Third, changes in the slope of the VIX futures curve are not coincident with changes in the slope
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of the implied volatility curve for at-the-money S&P 500 options. Fourth, rescaled range analysis

implies that VIX is mean-reverting. Fifth, principal component analysis indicates that two factors

describe 99.78% of the cross-sectional variation in VIX futures prices. Finally, shorting the VIX

futures contract with the most pronounced contango collects positive carry.

Building on our empirical observations, we develop a theory that exploits the notion that short-

dated volatility uncertainty is “stochastically smaller” than long-dated volatility uncertainty (under

all pricing measures). The device of stochastic orders of volatility uncertainty helps to decode the

sufficient conditions for when the VIX futures curve will predominantly be in contango. The

advantage of this approach is that it can be complemented with parametric modeling.

Combining our theoretical approach with a parametric model, in conjunction with our empir-

ical evidence, we consider a dynamic model of equity price dynamics that contains both diffusive

stochastic volatility risks and jump risks. The latter is relevant to interpreting traded volatility

uncertainty and reflects a disaster component with a stochastically varying probability of disasters.

The workings of our model reveal that the VIX futures curve is in contango when investors regard

disaster or volatility risks to be low relative to long-run reversion levels. This central intuition holds

when jumps in volatility, correlated with price jumps, are allowed. These outcomes are shown to

be consistent with our theory of stochastically smaller short-dated volatility uncertainty, a feature

that is mirrored pervasively in empirical VIX futures curves.9

9The pricing of VIX futures contracts is an essential component for the determination of exchange-traded notes on
volatility (e.g., VXX (with substantial trading volume)). Thus, the shape of the VIX futures curve merits a broader
theoretical understanding.
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Appendix

A Appendix A: Proof of Result 1 (stochastic orders and VIX futures curve)

Postulate T1 < T2 < . . . < Tn. We fix the notation as follows:

Z̃Tn = EQ({− 2
~
} log( STn+~

HTn+~
Tn

)
∣∣∣ITn) ∈ (0,∞) is the price of volatility uncertainty at time Tn.

GTn (respectively, GTn) is the distribution function (respectively, complementary distribution

function) of Z̃Tn under the probability measure Q.

Ross (1984, Chapter 9.1) defines Z̃T1 to be stochastically smaller than Z̃T2 , written Z̃T1 ≤st Z̃T2 ,

if
≡ ProbQ[Z̃T1

≥ z]

︷ ︸︸ ︷
GT1 [z] ≤

≡ ProbQ[Z̃T2
≥ z]

︷ ︸︸ ︷
GT2 [z], for all z ∈ (0,∞). (A1)

Then, by Ross (1984, Lemma 9.1.1), it holds that EQ(Z̃T1

∣∣It) ≤ EQ(Z̃T2

∣∣It). Furthermore, by Ross

(1984, Proposition 9.1.2)

Z̃T1 ≤st Z̃T2 ⇐⇒ EQ(f[Z̃T1 ]
∣∣∣It) ≤ EQ(f[Z̃T2 ]

∣∣∣It), (A2)

for all mappings f : R → R, which are nondecreasing, provided that the expectations exist. Result 1

follows since
√• is nondecreasing. �

B Appendix B: Restrictions on volatility uncertainty in equations (19)–(20) of Section 3

Throughout, ~ is fixed to 30/365.

In the setup described in equations (14)–(18), the price jumps are modeled as arriving at

random times tj with jump intensity λt, which is itself variable. Thus, we consider Stj = Stj− exj

and, therefore, Stj − Stj− = Stj− (exj − 1). Let EQ(•) denote unconditional expectation.

Applying Ito’s Lemma for semimartingales to (15) and using the fact that Ht+~
t = er~ St, we

obtain

log(
St+~

Ht+~
t

) = − 1

2

∫ t+~

t
vu du +

∫ t+~

t

√
vu dB

Q,s
u +

N
Q

t+~∑

j=N
Q
t

xj −
∫ t+~

t
λu E

Q(ex − 1)du

︸ ︷︷ ︸
compensator

. (B1)
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The size of the disasters −∞ < x < ∞ is an i.i.d random variable (satisfying EQ(ex) < ∞) and is

independent of the Poisson process NQ
t .

We exploit known results to verify the expressions in Section 3.2. First, for some variable yt, if

dyt = (θ − κ yt) dt + σ
√
yt dB

Q
t , (B2)

then EQ

(∫ T+~

T
yudu

∣∣IT
)

=
~ θ

κ
+

(1− e−κ ~)

κ
{yT − θ

κ
}, (B3)

and EQ
(
yT
∣∣It
)
− θ

κ
= (yt −

θ

κ
)e−κ(T−t). (B4)

Next, for compound Poisson processes (e.g., Privault (2014, Chapter 14.2))

EQ(

N
Q

T+~∑

j=N
Q
T

xj

∣∣∣IT ) = EQ(

∫ T+~

T
λu du

∣∣∣IT ) EQ(x). (B5)

Hence, the price of volatility uncertainty over T and T + ~ has two sources

Z̃T = EQ({−2

~
} log( ST+~

HT+~
T

)
∣∣∣IT ),

= EQ({−2

~
}{−1

2

∫ T+~

T
vu du

︸ ︷︷ ︸
diffusive volatility risks

over T to T+~

+

N
Q
T+~∑

j=N
Q

T

xj −
∫ T+~

T
λu E

Q(ex − 1) du

︸ ︷︷ ︸
disaster risks

over T to T+~

}
∣∣∣IT ). (B6)

Evaluate the second term and rearrange using equation (B5)

ÃT+~
T ≡ EQ


{−2

~
}{

N
Q

T+~∑

j=N
Q
T

xj −
∫ T+~

T
λu E

Q(ex − 1) du}
∣∣∣IT


 (B7)

= {−2

~
}EQ(

∫ T+~

T
λu du

∣∣∣IT )EQ(x) + {2
~
}EQ(ex − 1)EQ(

∫ T+~

T
λu du

∣∣∣IT ) (B8)

=
2

~
{−EQ(x) + EQ(ex − 1)} EQ(

∫ T+~

T
λu du

∣∣∣IT )
︸ ︷︷ ︸

using equation (B3)

(B9)

= 2 {EQ(ex − 1− x)}︸ ︷︷ ︸
≥ 0 (Jensen’s inequality)

(
θλ
κλ

+
(1− e−κλ~)

~κλ
(λT − θλ

κλ
)

)
. (B10)
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Note that (by Jensen’s inequality) EQ(ex− 1−x) ≥ 0 for any (i.i.d.) distribution of jump sizes

x satisfying EQ(ex) < ∞. For example, one could specify jump sizes that are (i) Gaussian (Merton

(1976)) or (ii) double exponential (Kou (2002)).

Returning to equation (B6), it then holds that

Z̃T =
1

~
EQ

(∫ T+~

T
vudu

∣∣IT
)

︸ ︷︷ ︸
using equation (B3)

+ ÃT+~
T (B11)

=
θvol
κvol

+
(1− e−κvol ~)

~κvol
{vT − θvol

κvol
} + ÃT+~

T .︸ ︷︷ ︸
using equation (B10)

(B12)

The expression presented in equation (19) is deduced.

To obtain an expression for EQ(Z̃T

∣∣It) employed in equation (20), we note, from equation (B4),

that EQ
(
vT

∣∣It
)
− θvol

κvol
= (vt − θvol

κvol
)e−κvol(T−t) and analogously for EQ

(
λT

∣∣It
)
− θλ

κλ
. �

C Appendix C: Model with time-varying disaster probability and co-jumps in price and

volatility

We consider the model in (22)-(27) of Section 3.3. This model incorporates (i) time-varying proba-

bility of disasters λt and (ii) co-jumps in equity price and volatility. Volatility has both diffusive and

discontinuous components. We reinforce the notion of stochastically smaller short-dated volatility

uncertainty when there are co-jumps in price and volatility under time-varying disaster probability.

The departure with volatility jumps and stochastic intensity is that equation (27) implies

EQ
(
vT+~

∣∣IT
)
− θvol

κvol
= (vT − θvol

κvol
)e−κvol~ + EQ(xv)E

Q(

∫ T+~

T
λu e

κvol(u−T−~)du
∣∣IT ). (C1)

We note that volatility jumps are additive with EQ(xv) > 0. The consequence of integrating

dvt = (θvol−κvolvt)dt+σvol
√
vtdB

Q,v
t +xvdN

Q
t , taking expectation, and using (C1), is the following:

EQ(

∫ T+~

T
vu du

∣∣IT ) =
θvol
κvol

~+
1

κvol
(vT − θvol

κvol
){1 − e−κvol~}

+
EQ(xv)

κvol

∫ T+~

T
EQ(λu

∣∣IT )︸ ︷︷ ︸
EQ(λu

∣∣IT )−
θλ
κλ

=(λT−
θλ
κλ

) e−κλ(u−T )

{1− eκvol(u−T−~)}du. (C2)
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The price of volatility uncertainty over T and T + ~ still has two sources that are time-varying:

Z̃T = EQ({−2

~
}{−1

2

∫ T+~

T
vu du

︸ ︷︷ ︸
volatility risks
over T to T+~

+

N
Q

T+~∑

j=N
Q
T

xsj −
∫ T+~

T
λu E

Q(exs − 1) du

︸ ︷︷ ︸
disaster risks

over T to T+~

}
∣∣∣IT ). (C3)

Organizing the next step, we note that

ÃT+~
T ≡ EQ


{−2

~
}{

N
Q
T+~∑

j=N
Q

T

xsj −
∫ T+~

T
λu E

Q(exs − 1) du}
∣∣∣IT




= 2 {EQ(exs − 1− xs)}︸ ︷︷ ︸
≥ 0 (Jensen’s inequality)

(
θλ
κλ

+
(1− e−κλ~)

~κλ
(λT − θλ

κλ
)

)
. (C4)

Returning to equation (C3) and using the form of (C2), it then holds that

Z̃T =
1

~
EQ

(∫ T+~

T
vudu

∣∣IT
)

︸ ︷︷ ︸
using equation (C2)

+ ÃT+~
T (C5)

=
θvol
κvol

+
(1− e−κvol ~)

~κvol
{vT − θvol

κvol
}

+
EQ(xv)

~κvol

∫ T+~

T

( θλ
κλ

+ (λT − θλ
κλ

)e−κλ(u−T )
)
(1− eκvol(u−T−~)) du

︸ ︷︷ ︸
expanding from (C2)

+ ÃT+~
T .︸ ︷︷ ︸

using (C4)

(C6)

To obtain EQ(Z̃T1

∣∣It) − EQ(Z̃T2

∣∣It) in equation (28), we use equation (C6) twice — once to get

EQ(Z̃T1

∣∣It) and next to get EQ(Z̃T2

∣∣It) — then we subtract and rearrange.

Specifically,

EQ(Z̃T

∣∣It) =
θvol
κvol

+
(1− e−κvol ~)

~κvol
EQ({vT − θvol

κvol
}
∣∣It)

︸ ︷︷ ︸
substitute from (C8)

+
EQ(xv)

~κvol

∫ T+~

T

( θλ
κλ

+ EQ({λT − θλ
κλ

}
∣∣It) e−κλ(u−T )

)
(1− eκvol(u−T−~))du

+ EQ(ÃT+~
T

∣∣It). (C7)

Term 4 in equation (28) is determined from EQ(ÃT1+~
T1

∣∣It)− EQ(ÃT2+~
T2

∣∣It).
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For our purposes, we additionally recognize that

EQ(vT

∣∣It)−
θvol
κvol

= (vt −
θvol
κvol

) e−κvol(T−t) + EQ(xv)E
Q(

∫ T

t
λu e

−κvol(T−u)du
∣∣It). (C8)

With EQ(Z̃T

∣∣It) outlined, we first show how Term 1 and Term 2 of equation (28) are obtained. It

follows that

EQ(

∫ T

t
λue

−κvol(T−u) du
∣∣It) =

∫ T

t

(
θλ
κλ

+ e−κλ(u−t)(λt −
θλ
κλ

)

)
e−κvol(T−u) du

=
θλ
κλ

1− e−κvol(T−t)

κvol
− (λt −

θλ
κλ

)
e−κvol(T−t) − e−κλ(T−t)

κvol − κλ
. (C9)

Accordingly, we note that Term 1 and Term 2 corresponding to EQ(Z̃T1

∣∣It)− EQ(Z̃T2

∣∣It) is

(1− e−κvol ~)

~κvol
EQ(xv) {EQ(

∫ T1

t
λue

−κvol(T1−u) du−
∫ T2

t
λue

−κvol(T2−u) du
∣∣It)} =

− (1− e−κvol ~)

~κvol
EQ(xv)

θλ
κλ

e−κvol(T1−t) − e−κvol(T2−t)

κvol︸ ︷︷ ︸
= Term 1

− (1− e−κvol ~)

~κvol
EQ(xv)

(
e−κvol(T1−t) − e−κλ(T1−t) − e−κvol(T2−t) + e−κλ(T2−t)

κvol − κλ

)

︸ ︷︷ ︸
= Term 2

(λt −
θλ
κλ

). (C10)

In light of component terms in EQ(Z̃T

∣∣It), next we show how Term 3 of equation (28) follows from

equation (C6). In this regard, the integral in equation (C6) simplifies as follows:

∫ T+~

T

( θλ
κλ

+ (λT − θλ
κλ

)e−κλ(u−T )
)
(1− eκvol(u−T−~)) du

=
[ θλ
κλ

u− θλ
κλκvol

eκvol(u−T−~) − (λT − θλ
κλ

)
e−κλ(u−T )

κλ

− (λT − θλ
κλ

)
e−κvol~

(κvol − κλ)
e(κvol−κλ)(u−T )

]u=T+~

u=T

=
θλ
κλ

~− θλ
κλ κvol

(1− e−κvol~) + (λT − θλ
κλ

)
((1 − e−κλ~)

κλ
+

e−κvol~

(κvol − κλ)
− e−κλ~

(κvol − κλ)

)

=
θλ
κλ

~− θλ
κλ κvol

(1− e−κvol~) +
(e−κvol~ − e−κλ~

(κvol − κλ)
+

(1− e−κλ~)

κλ

)
(λT − θλ

κλ
). (C11)
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With this intermediate integration step clarified, we deduce

{EQ(Z̃T1

∣∣It)− EQ(Z̃T2

∣∣It)}
( ~κvol
EQ(xv)

)
portion of Term 3 in equation (28)

=
θλ
κλ

~− θλ
κλ κvol

(1− e−κvol~) +
(e−κvol~ − e−κλ~

(κvol − κλ)
+

(1− e−κλ~)

κλ

)
EQ({λT1 −

θλ
κλ

∣∣It}
)

− { θλ
κλ

~− θλ
κλ κvol

(1− e−κvol~)} +
(e−κvol~ − e−κλ~

(κvol − κλ)
+

(1− e−κλ~)

κλ

)
EQ({λT2 −

θλ
κλ

∣∣It}
)
. (C12)

Then substitute EQ
(
λT1

∣∣It
)
− θλ

κλ
= (λt− θλ

κλ
)e−κλ(T1−t) and EQ

(
λT2

∣∣It
)
− θλ

κλ
= (λt− θλ

κλ
)e−κλ(T2−t).

Additionally cancel the constant term { θλ
κλ

~− θλ
κλ κvol

(1− e−κvol~)}. Hence, we obtain the expression

displayed as Term 3 in equation (28). �

This was the final step. �
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Table 1: Contango feature of the VIX futures curve

Reported results are based on daily VIX futures settlement prices over the sample period from 04/25/2006 to
12/31/2019. Obtained from the CBOE, the data contains open, high, low, close, and settlement prices for VIX
futures. The starting date coincides with daily futures prices being available for at least six consecutive VIX futures
maturities. There are 3,447 daily observations. We compute the slope (in decimal units) as follows:

Slope
(n)
t = log(

F
(n)
t

F
(1)
t

), for n = 2, . . . , 6.

Our results in Panel B are based on the following daily regressions:

log(F
(n)
t ) = αt + βt log(T (n)

t ) + ǫ
(n)
t , for n = 1, . . . , 6, and t = 1, . . . ,T,

where T (n)
t denotes the remaining term-to-maturity (in days) corresponding to futures contract n on day t. We do

not report intercept (α). The “t-stat.” on β (in Panel B) is obtained by using the HAC estimator of Newey and West
(1987). 1

{Slope
(n)
t

>0}
is the fraction (in %) of the observations with positive slopes. The row “# NW[t]>2” (Panel

B) provides a count of the number of t-statistics for βt that are higher than 2.0, whereas “# NW[t]< −2” provides a
count of the number of t-statistics for βt that are more negative than −2.0. SD is standard deviation.

Panel A: Contango based on six consecutive VIX futures contracts

Percentiles
Mean 1

{Slope
(n)
t

>0}
SD Min. Max. 5th 25th 50th 75th 95th

(%)

log(F
(2)
t /F

(1)
t ) 0.052 81.2 0.067 -0.401 0.291 -0.061 0.015 0.062 0.096 0.144

log(F
(3)
t /F

(1)
t ) 0.083 81.8 0.101 -0.588 0.388 -0.094 0.027 0.099 0.151 0.218

log(F
(4)
t /F

(1)
t ) 0.104 82.0 0.123 -0.610 0.432 -0.119 0.034 0.124 0.191 0.270

log(F
(5)
t /F

(1)
t ) 0.122 82.1 0.140 -0.621 0.483 -0.131 0.040 0.144 0.222 0.308

log(F
(6)
t /F

(1)
t ) 0.136 82.0 0.154 -0.671 0.547 -0.140 0.042 0.160 0.247 0.339

Panel B: Daily regressions of VIX futures prices

log(F
(n)
t ) = αt + βt log(T (n)

t ) + ǫ
(n)
t

Percentiles
Mean 1{βt>0} SD Min. Max. 5th 25th 50th 75th 95th

(%)

β 0.054 82.3 0.062 -0.246 0.229 -0.056 0.016 0.061 0.097 0.141
(t-stat.) (8.9)

# NW[t]>2 2702
# NW[t]< −2 537
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Table 2: Economic states and shape of the VIX futures curve

The contango feature of VIX futures is depicted across economic states. The economic state is bracketed by daily
VIX (Panel A) or daily S&P 500 index returns (Panel B). All reported results are based on daily VIX futures prices

over 04/25/2006 to 12/31/2019. We compute the slope of the VIX futures curve (in decimal units) as Slope
(n)
t =

log(
F

(n)
t

F
(1)
t

), for n = 2, . . . , 6. Reported 1
{Slope

(n)
t

>0}
is the fraction (in %) of the observations with positive slopes.

Panel A: The market state is daily VIX

Lower VIX < 10 10 13 15 18 22 30 40 > 50
Upper VIX 13 15 18 22 30 40 50

Frequency (days) 63 712 623 674 549 525 160 84 56
Frequency (%) 1.8 20.7 18.1 19.6 15.9 15.2 4.6 2.4 1.6

log(
F

(2)
t

F
(1)
t

) Mean 0.108 0.092 0.072 0.061 0.044 0.023 -0.033 -0.044 -0.143

1

{Slope
(2)
t

>0}
(%) 100 99.6 98.4 91.4 72.9 62.3 35.0 14.3 1.8

log(
F

(3)
t

F
(1)
t

) Mean 0.175 0.152 0.117 0.101 0.072 0.029 -0.050 -0.094 -0.227

1

{Slope
(3)
t

>0}
(%) 100 100 99.0 95.4 73.4 62.5 31.8 1.19 0

log(
F

(4)
t

F
(1)
t

) Mean 0.237 0.194 0.147 0.130 0.088 0.029 -0.060 -0.125 -0.288

1

{Slope
(4)
t

>0}
(%) 100 100 99.5 95.5 76.1 61.1 29.4 0 0

log(
F

(5)
t

F
(1)
t

) Mean 0.274 0.227 0.171 0.154 0.102 0.029 -0.061 -0.148 -0.335

1

{Slope
(5)
t

>0}
(%) 100 100 99.5 96.7 77.8 59.2 28.1 0 0

log(
F

(6)
t

F
(1)
t

) Mean 0.313 0.254 0.192 0.174 0.111 0.030 -0.064 -0.163 -0.376

1

{Slope
(6)
t

>0}
(%) 100 100 99.5 97.9 78.5 59.2 19.4 0 0

Panel B: The market state is daily S&P 500 equity index returns

Return < −0.035 −0.035 −0.025 −0.015 −0.005 0.005 0.015 0.025 >0.035
Interval −0.025 −0.015 −0.005 0.005 0.015 0.025 0.035

Frequency (days) 33 55 160 494 1781 714 144 34 31
Frequency (%) 1.0 1.6 4.6 14.3 51.7 20.7 4.2 1.0 0.9

log(
F

(2)
t

F
(1)
t

) Mean -0.123 -0.037 -0.003 0.033 0.070 0.059 0.021 0.001 -0.077

1

{Slope
(2)
t

>0}
(%) 0 25.5 48.8 74.1 91.1 84.0 65.3 52.9 12.9

log(
F

(3)
t

F
(1)
t

) Mean -0.182 -0.059 -0.003 0.054 0.113 0.093 0.035 -0.008 -0.131

1

{Slope
(3)
t

>0}
(%) 0 29.1 49.4 74.7 91.7 85.0 65.3 47.1 12.9

log(
F

(4)
t

F
(1)
t

) Mean -0.223 -0.074 -0.002 0.068 0.143 0.115 0.045 -0.020 -0.167

1

{Slope
(4)
t

>0}
(%) 0 27.3 49.4 75.9 91.9 84.9 66.0 44.1 12.9

log(
F

(5)
t

F
(1)
t

) Mean -0.254 -0.084 0.000 0.082 0.166 0.133 0.052 -0.022 -0.194

1

{Slope
(5)
t

>0}
(%) 0 27.3 50.6 76.7 91.9 84.7 65.3 47.0 12.9

log(
F

(6)
t

F
(1)
t

) Mean -0.269 -0.090 0.002 0.093 0.185 0.147 0.058 -0.027 -0.213

1

{Slope
(6)
t

>0}
(%) 0 27.3 49.4 77.5 92.0 84.5 63.9 41.8 12.9
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Table 3: Slope of the VIX futures curve and slope of the volatility curve of at-the-money
S&P 500 index options

Each day in our sample, we construct the volatilities based on the at-the-money (ATM) S&P 500 index
option contracts with expiration dates nearest to the corresponding VIX futures contracts. Specifically,

IV
(n)
t,spx is the average of (Black-Scholes) volatility extracted from ATM put and call on the S&P 500 index.

Each day, we compute log(IV
(2)
t,spx/IV

(1)
t,spx) and log(IV

(4)
t,spx/IV

(1)
t,spx). In our calculations

∆Slope
(n)
t,spx options ≡ log(

IV
(n)
t,spx

IV
(1)
t,spx

) − log(
IV

(n)
t−1,spx

IV
(1)
t−1,spx

) and

∆Slope
(n)
t,vix futures ≡ log(

F
(n)
t

F
(1)
t

) − log(
F

(n)
t−1

F
(1)
t−1

).

Joint frequencies (%)

∆Slope
(n)
t,vix futures ∆Slope

(n)
t,spx options n = 2 n = 4

+ + 31 31
− − 33 32

+ − 24 22
− + 12 14
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Table 4: Weekly excess returns obtained by rank-ordering the VIX futures contracts

by the degree of
F

(n)
t

F
(n−1)
t

We employ the following procedure to obtain the returns of contango-sorted VIX futures positions:

step 1. At the end of each Tuesday, compute the slope of the VIX futures curve at six distinct points:
F

(1)
t

F
(0)
t

,
F

(2)
t

F
(1)
t

,

F
(3)
t

F
(2)
t

,
F

(4)
t

F
(3)
t

,
F

(5)
t

F
(4)
t

,
F

(6)
t

F
(5)
t

. These VIX futures contracts are differentiated by expiration dates.

step 2. Sort the VIX futures contracts of different expiration dates from the lowest
F

(n)
t

F
(n−1)
t

to the highest. Compute

the subsequent weekly VIX futures returns (Tuesday to Tuesday) of a fully collateralized long position, that is
r{t→t+1} = 1

Ft
(Ft+1−Ft). The return of the carry — obtained by longing the futures contract of the maturity

exhibiting the least contango (lowest
F

(n)
t

F
(n−1)
t

) and shorting the futures contract of the maturity exhibiting the

most contango (highest
F

(n)
t

F
(n−1)
t

) — is computed as follows:

carry{t→t+1}
︸ ︷︷ ︸

weekly return

=
1

2
(rleast contangoed

{t→t+1} − rmost contangoed
{t→t+1} ).

We assign 1/2 dollar to both the long and short legs of the trade.

step 3. Repeat the procedure for each of the 743 weeks (5/23/2006 to 8/11/2020). These returns are rank-ordered

by
F

(n)
t

F
(n−1)
t

.

Reported is the (weekly) mean return, the standard deviation, the percentiles, and the lower and upper 95% i.i.d.
bootstrap confidence intervals. ACFℓ is the ℓ-order autocorrelation of weekly returns.

Weekly excess returns of VIX futures contracts

(Sorted by lowest
F

(n)
t

F
(n−1)
t

to highest
F

(n)
t

F
(n−1)
t

)

Groups 1 2 3 4 5 6 carry{t→t+1}

(1 minus 6)/2

Summary statistics (weekly returns)

Mean 0.0015 -0.0014 -0.0041 -0.0036 -0.0063 -0.0072 0.0044

SD 0.0831 0.0638 0.0627 0.0610 0.0705 0.0778 0.0310

2.5th percentile -0.1441 -0.1107 -0.1079 -0.1019 -0.1236 -0.1185 -0.0559

50th percentile -0.0059 -0.0063 -0.0086 -0.0097 -0.0125 -0.0154 0.0050

97.5th percentile 0.1992 0.1455 0.1305 0.1280 0.1480 0.1778 0.0592

ACF1 0.078 0.055 0.047 0.019 0.012 0.019 0.011
ACF12 0.013 0.031 0.022 0.009 0.025 0.040 -0.056

Bootstrap confidence intervals on the mean of weekly returns
Bootstrap lower 95% CI -0.0042 -0.0058 -0.0084 -0.0079 -0.0114 -0.0127 0.0022

Bootstrap upper 95% CI 0.0075 0.0032 0.0005 0.0008 -0.0011 -0.0015 0.0066

32



Table 5: Qualitative and quantitative implications of the theory

We employ equation (29) to extract the risk-neutral disaster probability over 519 weeks in our sample of weekly
put options (every Friday) from 1/7/2011 to 12/18/2020. There are 76 puts (on average) with non-zero bids for
each weekly option cycle and the average moneyness for the deepest OTM put is 23%. Panel A sets up a logistic
regression. Let 1{slope of the VIX futures curvet>0} follow a Bernoulli probability function, which takes a value of 1 when
in contango (with probability qt) and 0 (when in backwardation) with probability 1−qt. The empirical specification

is qt = (1+ e
−{aλ+bλ log( 1

λt
)}
)−1. We show the pseudo R2. Reported alongside is the likelihood ratio (LR), which is

distributed χ2(1). The p-values for the coefficients (aλ, bλ) are based on z-statistics. Panel B presents a contingency
table for the joint counts of the slope of the VIX futures curve and instances that disaster probabilities are greater or
less than the estimated long run mean. Reported in ⌊.⌋ are the 95% bootstrap lower and upper confidence intervals
from a circular block bootstrap. Reported in Panel C are the properties of λt. We show the mean, the standard
deviation (SD), the lower and upper 95% bootstrap confidence intervals, the percentiles, and the minimum and the
maximum. ACF1 is the first-order autocorrelation. Panel D reports the maximum likelihood estimation (MLE)
of equation (18): dλt = κλ(

θλ
κλ

− λt)dt + σλ

√
λt dB

Q,λ
t . The transition density follows a non-central chi-square

distribution (e.g., Cox, Ingersoll, and Ross (1985, equation (18))).

Panel A: Estimates from the logistic regression

aλ p-val. bλ p-val. pseudo-R2 LR χ2(1) p-val.
> 8% disaster probability -9.89 {0.00} 2.56 {0.00} 0.56 253 0.00
> 10% disaster probability -11.19 {0.00} 2.47 {0.00} 0.56 256 0.00

Panel B: Model-implied counts of VIX futures contango and backwardation

> 8% disaster > 10% disaster
probability probability
Count Count

(weeks) (%) (weeks) (%)

Extracted λt < estimated θλ
κλ

and VIX futures in contango 396 76 402 77

⌊350, 411⌋ ⌊67, 79⌋ [358, 422] [69, 81]

Extracted λt > estimated θλ
κλ

and VIX futures in backwardation 71 14 69 13

⌊42, 94⌋ ⌊8, 18⌋ ⌊41, 88⌋ ⌊8, 17⌋

Extracted λt > estimated θλ
κλ

and VIX futures in contango 41 8 35 7

⌊19, 104⌋ ⌊4, 20⌋ ⌊13, 95⌋ ⌊3, 18⌋
Extracted λt < estimated θλ

κλ

and VIX futures in backwardation 13 2 15 3

⌊3, 36⌋ ⌊1, 7⌋ ⌊3, 44⌋ ⌊1, 8⌋

Panel C: Probability of disasters extracted from weeklys on the S&P 500 index

Bootstrap CI Percentiles
Mean SD Lower Upper Min. P5 P50 P95 Max. ACF1

> 8% disaster probability 0.01206 0.0234 0.0101 0.0141 0.0006 0.0011 0.0048 0.0491 0.2236 0.79
> 10% disaster probability 0.00695 0.0169 0.0056 0.0085 0.0003 0.0006 0.0023 0.0273 0.1836 0.78

Panel D: MLE estimation of the transition density of λt (∆t = 1/52)

8% disaster probability 10% disaster probability

κλ ∆t× θλ
κλ

√
∆t× σλ κλ ∆t× θλ

κλ

√
∆t× σλ

Estimate 22.15 0.0121 0.73 26.04 0.0069 0.60
t-stat. (13.2) (11.0) (39.2) (17.0) (15.3) (27.1)
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Contango

Internet Appendix: Not Intended for Publication

Abstract

Section A.1 shows that changes, over one-month periods, in the slope of the VIX futures curve are

predictable by variables known at the beginning of the month, such as option implied measures —

inferred from equity index options or VIX options — of jump risks and return volatility. Specific

drivers of the subsequent variation in the VIX futures curve include (i) jump risks, risk reversals,

and butterfly spreads inferred from VIX options, (ii) quadratic variation of the S&P 500 index, and

(iii) butterfly spreads inferred from S&P 500 index options.

The purpose of Section A.2 and Section A.3 is to outline, more generally, the sources of risks

that impact the slope of the VIX futures curve. We work with a semimartingale model for St in

combination with Tanaka’s formula for semimartingales.

Section A.4 examines the nature of VIX futures contango in a model of equity index dynamics

with constant disaster probability and two diffusive volatility components.



A Internet Appendix

A.1 Changes in the slope of the VIX futures curve are predictable

To examine the association between changes in the slope of the VIX futures curve (log(
F

(2)
t

F
(1)
t

)) and

economic variables q
[j]
t , we first perform the following univariate predictive regressions with monthly

sampled data points:

∆Slope
(2)
t+1,vix futures︸ ︷︷ ︸

change in the slope of the VIX futures curve

= θ0 + θq q
[j]
t + ǫ

[j]
t+1, for j = 1, . . . , 9. (I1)

Our inference about θq is based on the HAC estimator of Newey and West (1987) with automatically

selected lags.

Exploring dependencies, we identify nine predictors from S&P 500 and VIX options markets,

the construction of which is described in the note to Table I.5. These predictive variables are known

at time t and can be viewed as encoding information about disaster risks or volatility risks.

Table I.5 (Panel A) imparts the implication that Jump Riskvixt , Risk Reversalvixt , log VIXt,

Equity Returnspxt , and Jump Riskspxt exhibit the highest predictive ability. The absolute correla-

tions range between 0.19 and 0.35, with the highest correlation between ∆Slope
(2)
t+1,vix futures

and

Jump Riskvixt . With a positive θq estimate, VIX jump risks associates to a stronger subsequent

near-term contango. In other words, this effect forecasts the easing of economic concerns.

Since many predictors are informed by options data, one may suspect that some of these vari-

ables are cross-correlated. Accounting for this feature, Table I.5 (Panel B) presents bivariate

regressions that pairs Jump Riskvixt with other variables, as follows:

∆Slope
(2)
t+1,vix futures

= θ0 + θ{vix jump risk} Jump Riskvixt + θq q
[j]
t + ǫ

[j]
t+1, for j = 2, . . . , 9. (I2)

The variable Jump Riskvixt maintains its significance in the presence of other variables. Over-

all, this part of our analysis reveals the importance of four other statistically significant predic-

tors: Risk Reversalvixt , Butterfly Spreadspxt , Quadratic Variationspx
t , and Butterfly Spreadvixt . The

goodness-of-fit R
2
’s in the bivariate regressions range between 11.4% and 14.5%.

1



Since butterfly spreads are often employed in high volatility environments when investors are ap-

prehensive about near-term equity market outlook, both Butterfly Spreadspxt and Butterfly Spreadvixt

manifest negative predictive coefficients. Thus, these variables tend to forecast a subsequent decline

in the near-term slope of the VIX futures curve. In contrast, a more pronounced Risk Reversalvixt

or Quadratic Variationspx
t aligns with the steepening of the VIX futures curve. In essence, these

variables cover data situations that forecast higher near-term volatility uncertainty.

A.2 Sources of risks that impact the slope of the VIX futures curve

Working with a semimartingale model for St in conjunction with Tanaka’s formula for semimartin-

gales, one can connect Z̃T generically to the price of local time (local time can be essentially thought

of as a strike dependent variance (as formalized in equation (I11))) and the price of jumps across

the strike (as formalized in equation (I14)). Our purpose is to motivate a model design.

Formalizing our characterizations, we define the option moneyness k ≡ K
HT+~

T

. We note that

(ST+~ −K)+ = max(ST+~ −K, 0) = max(HT+~
T+~ −K, 0) = HT+~

T max(RT+~ − k, 0), (I3)

where RT+~ =
HT+~

T+~

HT+~
T

is the gross futures return between T and T + ~. (I4)

Analogously, max(K − ST+~, 0) = HT+~
T max(k −RT+~, 0). For brevity, we introduce the set

χdown ≡ {K < HT+~
T } = {k < 1} and χup ≡ {K > HT+~

T } = {k > 1}. (I5)

Using Tanaka’s formula for semimartingales (as outlined in Internet Appendix (Section A.3)),

and spanning log(
ST+~

HT+~
T

) with the help of option payoffs, it follows that

Z̃T = EQ

(
{
∫

χdown

2

~K2

(
K −HT+~

T+~

)+
dK +

∫

χup

2

~K2

(
HT+~

T+~ −K
)+

dK}
∣∣∣IT
)

(I6)

= EQ

(
{
∫

χdown

2

~ k2
(k −RT+~)

+ dk +

∫

χup

2

~ k2
(RT+~ − k)+ dk}

∣∣∣IT
)

(I7)

=

∫

χdown

2

~ k2
EQ(LT [k]

∣∣∣IT ) dk +

∫

χup

2

~ k2
EQ(LT [k]

∣∣∣IT ) dk

+

∫

χdown

2

~ k2
EQ(Jdown

T [k]
∣∣∣IT ) dk +

∫

χup

2

~ k2
EQ(Jup

T [k]
∣∣∣IT ) dk. (I8)
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In equation (I8), LT [k] — which represents local time — and Jdown
T [k] and Jup

T [k] — which rep-

resent jumps across the strike — have a standard representation from Protter (2013), as presented

in Internet Appendix (Section A.3).

The takeaway is that Z̃Tn encapsulates the uncertainty about the pricing of local time (between

Tn and Tn + ~) and the pricing of jumps across the strike (between Tn and Tn + ~).

By the Tower law, EQ({ỹ
∣∣IT}

∣∣It) = EQ(ỹ
∣∣It) for a suitable random variable ỹ. The interpreta-

tion of contango that F T1
t < F T2

t for T1 < T2 (Result 1) accords with the following restrictions:

EQ(LT1 [k]
∣∣It) ≤ EQ(LT2 [k]

∣∣∣It), for all k. (I9)

EQ(Jdown
T1

[k]
∣∣It) ≤ EQ(Jdown

T2
[k]
∣∣It) and EQ(Jup

T1
[k]
∣∣It) ≤ EQ(Jup

T2
[k]
∣∣It). (I10)

If the equity market were to be jittery with elevated jump and volatility risks and no immediate

closure were envisioned (e.g., when coronavirus concerns emerged), these restrictions could be

violated with an extended pattern of backwardation. The implications of the expressions (I9)–(I10)

are made clearer through the models of Section 3.2 and Section 3.3.

A.3 General form of Z̃T in equation (I8) of Section A.2

Set RT+~ ≡ HT+~
T+~

HT+~
T

, which is the gross futures return between T and T + ~. We recognize that

RT =
HT+~

T

HT+~
T

= 1. For the analysis concerning local time and jumps across the strike, we follow

Bakshi, Crosby, and Gao (2020).

Recall k is the option moneyness and let δ{•} be the Dirac delta function. We introduce [Rc, Rc]ℓ

as the path-by-path continuous part of the quadratic variation, from t to ℓ.

We hereby denote

LT [k] =
1

2

∫ T+~

T
δ{Rℓ−k} d[R

c, Rc]ℓ as the local time. (Protter (2013, Theorem 71, page 221)) (I11)

The quadratic variation is defined (see Protter (2013, page 70)) as

[Rc, Rc]ℓ ≡ [R,R]ℓ︸ ︷︷ ︸
quadratic variation

−
∑

t≤j≤ℓ

(Rj −Rj−)
2.

︸ ︷︷ ︸
sum of squares of the return jumps

(I12)
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In our setting, LT [k] captures the slice of uncertainty associated with the time that the futures

return Rℓ spends at the level k between T and T + ~. In economic terms, one may contemplate

Lt[k] as a form of volatility uncertainty when Rℓ takes a value precisely equal to k.

Additionally, we define

Jdown
T ≡

∑

T<ℓ≤T+~

1{Rℓ−<k} max(Rℓ − k, 0) +
∑

T<ℓ≤T+~

1{Rℓ−≥k} max(k −Rℓ, 0), (I13)

Jup
T ≡

∑

T<ℓ≤T+~

1{Rℓ−≤k} max(Rℓ − k, 0)

︸ ︷︷ ︸
(jumps crossing the strike from below)

+
∑

T<ℓ≤T+~

1{Rℓ−>k} max(k −Rℓ, 0).

︸ ︷︷ ︸
(jumps crossing the strike from above)

(I14)

These terms characterize large deviations and do not appear in the absence of jumps.

Tanaka’s formula for semimartingales. We rely on Tanaka’s formula for (general) semimartin-

gales, as in Protter (2013, Theorem 68, page 216):

max(k −RT+~, 0) −
intrinsic value︷ ︸︸ ︷

max(k −RT , 0)︸ ︷︷ ︸
=0, for OTM puts

= −
∫ T+~

T+
1{Rℓ−<k}dGℓ +

local time︷ ︸︸ ︷
LT [k] + Jdown

T (I15)

and

max(RT+~ − k, 0) −
intrinsic value︷ ︸︸ ︷

max(RT − k, 0)︸ ︷︷ ︸
=0, for OTM calls

=

∫ T+~

T+
1{Rℓ−>k}dGℓ +

local time︷ ︸︸ ︷
LT [k] + Jup

T . (I16)

The term
∫ T+~

T+ 1{Rℓ−>k} dRℓ is a stochastic integral representing the gains/losses to a dynamic

trading strategy that takes a long position of size 1
HT+~

ℓ

at time ℓ, in the equity futures, if, and only

if, Rℓ− > k.

Substituting (I15) and (I16) into equation (I7) affirms equation (I8). �
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A.4 Model with constant disaster probability and two diffusive volatility com-

ponents

For this theoretical exercise, we modify the equity index price dynamics in (14)–(18), following

Bates (2000)), in the following way:

Size of disasters: x follows (unspecified) i.i.d. distribution under Q (I17)

Equity index price :
dSt

St−
= r dt+

2∑

i=1

√
vi
t dB

Q,si

t + (ex − 1) dNQ
t − λEQ(ex − 1)dt (I18)

Poisson jump : dNQ
t =





1 with probability λ dt

0 with probability 1− λ dt
(I19)

where λ is a constant (I20)

Two diffusive variances : dvi
t =

(
θivol − κivol v

i
t

)
dt + σi

vol

√
vi
t dB

Q,vi

t for i = 1, 2. (I21)

In this setup, the two volatility components evolve independently and dNQ
t uncertainty is un-

correlated with diffusion uncertainty. The standard Brownian motion B
Q,si

t is correlated with B
Q,vi

t

for each i but otherwise not cross-correlated. Hence,

log(
St+~

Ht+~
t

) = − 1

2

∫ t+~

t

2∑

i=1

vi
u du +

∫ t+~

t

2∑

i=1

√
vi
u dB

Q,si
u +

N
Q
t+~∑

j=N
Q
t

xj − λ ~EQ(ex−1). (I22)

For a compound Poisson processes with constant intensity, we also have

EQ(

N
Q
T+~∑

j=N
Q
T

xj

∣∣∣IT ) = ~λEQ(x). (I23)

The price of volatility uncertainty over T and T + ~ is

Z̃T = EQ({−2

~
} log( ST+~

HT+~
T

)
∣∣∣IT ),

= EQ({−2

~
}{−1

2

∫ T+~

T

2∑

i=1

vi
u du

︸ ︷︷ ︸
two diffusive volatility risks

over T to T+~

}
∣∣∣IT ) + {−2

~
}{~λEQ(x)− λ ~EQ(ex − 1)︸ ︷︷ ︸

time-invariant disaster component
over T to T+~

}. (I24)
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It holds that

Z̃T =
1

~
EQ

(∫ T+~

T

2∑

i=1

vi
udu

∣∣IT
)

+ 2λEQ(ex − 1− x) (I25)

=

2∑

i=1

θivol
κivol

+

2∑

i=1

(1− e−κi
vol ~)

~κivol
{vi

T − θivol
κivol

} + 2λEQ(ex − 1− x). (I26)

In this case, the futures price F T
t = EQ(

√
Z̃T

∣∣∣It) inherits a two-factor structure in diffusive volatil-

ities.

If Z̃T1 is stochastically smaller than Z̃T2 , that is, Z̃T1 ≤st Z̃T2 , then, for T1 < T2,

0 ≥

from equation (11) of Result 1︷ ︸︸ ︷
EQ(Z̃T1

∣∣It) − EQ(Z̃T2

∣∣It) implying that

=

2∑

i=1

(1− e−κi
vol ~)

~κivol︸ ︷︷ ︸
>0

{e−κi
vol(T1−t) − e−κi

vol(T2−t)}︸ ︷︷ ︸
>0

(vi
t −

θivol
κivol

). (I27)

For EQ(Z̃T1

∣∣It) − EQ(Z̃T2

∣∣It) < 0, both the volatility factors must be below their respective long-

term means. Then, the VIX futures curve supports contango. �
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Table I.1: Open interest and volume of VIX futures

Reported entries reflect the daily open interest (contracts outstanding) and volume (number of
contracts traded) for VIX futures contracts over the sample period of 04/25/2006 to 12/31/2019.

Displayed are the summary statistics (mean and standard deviation (SD)) for open interest and vol-
ume. The starting date coincides with daily futures prices being available for at least six consecutive
VIX futures maturities. There are 3,447 daily observations.

Panel A: Daily open interest
(number of contracts outstanding)

Contract n Mean SD

1 94488 78608
2 81777 71079
3 32000 21287
4 22700 15026
5 17979 12691
6 13135 9824

Panel B: Daily volume
(number of contracts traded)

Contract n Mean SD

1 58960 61250
2 44616 49519
3 13246 13804
4 6937 6993
5 4155 4222
6 2515 2493



Table I.2: Futures on the volatility of the STOXX 50 equity index

For this exercise, we utilize the futures on the VSTOXX index. The VSTOXX index measures the 30-day risk-neutral
volatility extracted from options on the EURO STOXX 50 equity index. Reported results are based on daily VSTOXX
futures settlement prices over the sample period of 10/22/2010 to 09/23/2021. There are 2,787 daily observations.
We compute the slope (in decimal units) as follows:

Slope
(n)
t = log(

F
(n)
t

F
(1)
t

), for n = 2, . . . , 6.

SD is standard deviation. 1
{Slope

(n)
t

>0}
is the fraction (in %) of the observations with positive slopes.

Contango based on six consecutive VSTOXX volatility futures contracts

Percentiles
Mean 1

{Slope
(n)
t

>0}
SD Min. Max. 5th 25th 50th 75th 95th

log(F
(2)
t /F

(1)
t ) 0.036 74.5 0.082 -0.396 0.520 -0.094 0.000 0.042 0.077 0.141

log(F
(3)
t /F

(1)
t ) 0.059 76.6 0.108 -0.598 0.510 -0.140 0.006 0.069 0.120 0.213

log(F
(4)
t /F

(1)
t ) 0.070 76.7 0.127 -0.762 0.447 -0.167 0.008 0.080 0.146 0.252

log(F
(5)
t /F

(1)
t ) 0.078 76.1 0.143 -0.856 0.534 -0.170 0.006 0.095 0.165 0.277

log(F
(6)
t /F

(1)
t ) 0.087 75.9 0.154 -0.963 0.509 -0.181 0.007 0.108 0.183 0.306
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Table I.3: Economic states and shape of the VSTOXX futures curve
The contango feature is depicted across economic states. The economic state is bracketed by daily front-month VSTOXX
futures level (Panel A) or daily STOXX 50 index equity returns (Panel B). Reported results are based on daily VSTOXX
futures settlement prices over the sample period of 10/22/2010 to 09/23/2021. There are 2,787 daily observations. We compute

the slope of the futures curve (in decimal units) as Slope
(n)
t = log(

F
(n)
t

F
(1)
t

), for n = 2, . . . , 6. Reported 1

{Slope
(n)
t

>0}
is the

fraction (in %) of the observations with positive slopes.

Panel A: The market state is front-month VSTOXX futures level

Lower < 13 13 15 18 22 30 40 > 50
Upper 15 18 22 30 40 50

Frequency (days) 71 342 567 749 820 175 56 7
Frequency (%) 2.55 12.27 20.34 26.87 29.42 6.28 2.01 0.25

log(
F

(2)
t

F
(1)
t

) Mean 0.151 0.082 0.067 0.042 0.009 -0.035 -0.117 -0.284

1

{Slope
(2)
t

>0}
(%) 100 97.7 88.7 81.6 60.5 33.1 3.6 0

log(
F

(3)
t

F
(1)
t

) Mean 0.215 0.132 0.102 0.071 0.018 -0.051 -0.191 -0.469

1

{Slope
(3)
t

>0}
(%) 100 100 92.6 84.5 61.7 31.4 3.6 0

log(
F

(4)
t

F
(1)
t

) Mean 0.274 0.169 0.120 0.085 0.020 -0.075 -0.252 -0.607

1

{Slope
(4)
t

>0}
(%) 100 100 93.8 85.8 61.6 25.7 0 0

log(
F

(5)
t

F
(1)
t

) Mean 0.306 0.187 0.139 0.095 0.024 -0.085 -0.296 -0.747

1

{Slope
(5)
t

>0}
(%) 100 100 95.6 84.9 59.8 22.9 0 0

log(
F

(6)
t

F
(1)
t

) Mean 0.322 0.203 0.154 0.109 0.027 -0.095 -0.313 -0.846

1

{Slope
(6)
t

>0}
(%) 100 100 95.9 85.8 58.4 21.1 0 0

Panel B: The market state is daily STOXX 50 equity index return

Return <-0.035 −0.035 −0.025 −0.015 −0.005 0.005 0.015 0.025 >0.035
Interval −0.025 −0.015 −0.005 0.005 0.015 0.025 0.035

Frequency (days) 31 53 156 506 1189 614 162 56 20
Frequency (%) 1.11 1.90 5.60 18.16 42.68 22.00 5.81 2.01 0.72

log(
F

(2)
t

F
(1)
t

) Mean -0.128 -0.016 -0.014 0.028 0.056 0.042 0.019 -0.025 -0.033

1

{Slope
(2)
t

>0}
(%) 6.5 35.8 46.2 71.3 83.8 78.8 69.8 39.3 30.0

log(
F

(3)
t

F
(1)
t

) Mean -0.204 -0.029 -0.014 0.050 0.087 0.072 0.027 -0.033 -0.055

1

{Slope
(3)
t

>0}
(%) 6.5 43.4 49.4 74.3 86.0 81.2 66.0 37.5 35.0

log(
F

(4)
t

F
(1)
t

) Mean -0.255 -0.036 -0.017 0.060 0.104 0.086 0.026 -0.048 -0.082

1

{Slope
(4)
t

>0}
(%) 6.5 39.6 48.1 75.3 86.2 81.1 66.7 39.3 30.0

log(
F

(5)
t

F
(1)
t

) Mean -0.285 -0.041 -0.020 0.067 0.118 0.096 0.029 -0.057 -0.102

1

{Slope
(5)
t

>0}
(%) 6.5 41.5 46.8 74.3 86.1 80.1 65.4 35.7 30.0

log(
F

(6)
t

F
(1)
t

) Mean -0.311 -0.035 -0.018 0.075 0.130 0.106 0.030 -0.066 -0.109

1

{Slope
(6)
t

>0}
(%) 3.2 41.5 46.2 73.7 86.2 81.3 61.7 35.7 20.0
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Table I.4: Principal component analysis of the VIX futures prices

Reported are the principal component coefficients for each of the six VIX futures contracts. Data is daily
and the sample period is 04/25/2006 to 12/31/2019 (3,447 daily observations). The last row reports the
share of the total variance explained by each of the principal components.

Principal components

VIX futures maturity n PC1 PC2 PC3 PC4 PC5 PC6

1 0.40 0.73 0.52 -0.19 0.06 0.03
2 0.41 0.29 -0.44 0.66 -0.30 -0.17
3 0.41 0.01 -0.50 -0.22 0.64 0.36
4 0.41 -0.19 -0.19 -0.58 -0.28 -0.58
5 0.41 -0.35 0.17 -0.05 -0.51 0.65
6 0.41 -0.47 0.47 0.38 0.40 -0.29

Variance explained (%) 97.42 2.36 0.16 0.03 0.02 0.01
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Table I.5: Variables that forecast the VIX futures curve

With ∆Slope
(2)
t,vix futures = log(

F
(2)
t

F
(1)
t

)− log(
F

(2)
t−1

F
(1)
t−1

), the predictive regression is

∆Slope
(2)
t+1,vix futures = θintercept + θq q

[j]
t + ǫ

[j]
t+1, j = 1, . . . , 9.

Additionally, we examine the bivariate predictive regressions of the type

∆Slope
(2)
t+1,vix futures = θintercept + θ{vix jump risk} Jump Riskvix

t + θq q
[j]
t + ǫ

[j]
t+1, j = 2, . . . , 9.

The variables are constructed in the following manner:

- Jump Riskvixt : Price of a 20% OTM VIX put divided by the VIX futures price.

- Risk Reversalvixt : Implied volatility of a 20% OTM VIX put divided by the implied volatility of the 20% OTM
VIX call.

- Logarithm VIXt: Logarithm of the VIX index.

- Equity Returnspx
t : Prior return of the S&P 500 equity index.

- Jump Riskspxt : Price of a 5% OTM S&P 500 put divided by the level of the S&P 500 index (e.g., Bollerslev
and Todorov (2011)).

- Butterfly Spreadspx
t : Implied volatility (average) of a 5% OTM put and call divided by the average implied

volatility of an ATM put and call.

- Quadratic Variationspx
t : Squared (log) S&P 500 returns, summed over the prior expiration cycle.

- Change in ATM Implied Volatilityvix
t : Reflects the change in the implied volatility (average) of an ATM VIX

put and call over the prior expiration cycle.

- Butterfly Spreadvix
t : Implied volatility (average) of a 20% OTM VIX put and call divided by the average

implied volatility of an ATM VIX put and call.

The data is sampled monthly and contains 163 observations. The intercept is included in the regressions but not
reported. For ease of comparability, each predictor is standardized to have zero sample mean and unit standard
deviation. Reported NW[p] is based on the HAC estimator of Newey and West (1987) with automatically selected

lags, and Corr (in Panel A) is the correlation between ∆Slope
(2)
t+1,vix futures and the predictor. R

2
is the adjusted R2

and DW is the Durbin Watson statistic.

Panel A: Univariate regressions

Predictor

Univariate predictor θq NW[p] R
2

Corr NW DW
×10−2 lag

1 Jump Riskvixt 1.77 0.00 12 0.35 4 2.5
2 Risk Reversalvixt 1.60 0.00 9 0.32 6 2.5
3 Logarithm VIXt 1.48 0.00 8 0.29 4 2.5
4 Equity Returnspx

t -1.34 0.00 6 -0.26 1 2.4
5 Jump Riskspxt 1.33 0.00 6 0.26 5 2.6
6 Butterfly Spreadspx

t -1.14 0.00 4 -0.23 7 2.6
7 Quadratic Variationspx

t 1.10 0.00 4 0.22 5 2.6
8 Change in Implied Volatilityvix

t 1.05 0.02 4 0.21 4 2.4
9 Butterfly Spreadvix

t -0.98 0.00 3 -0.19 4 2.5

Panel B: Bivariate regressions

Jump Riskvixt Other predictor R
2

DW
θ{vix jump risk} NW[p] θq NW[p]

Other predictor (q
[j]
t ) ×10−2 ×10−2

Jump Riskvix
t Risk Reversalvixt 1.27 0.01 0.76 0.10 12.4 2.5

Jump Riskvix
t Logarithm VIXt 1.39 0.01 0.61 0.15 12.0 2.5

Jump Riskvix
t Equity Returnspx

t 1.49 0.00 -0.52 0.24 11.8 2.4

Jump Riskvix
t Jump Riskspx

t 1.50 0.00 0.50 0.06 11.8 2.5

Jump Riskvix
t Butterfly Spreadspx

t 1.56 0.00 −0.56 0.03 12.2 2.5

Jump Riskvix
t Quadratic Variationspx

t 1.59 0.00 0.46 0.01 11.8 2.5
Jump Riskvix

t Change in Implied Volatilityvix
t 1.63 0.00 0.33 0.53 11.4 2.4

Jump Riskvix
t Butterfly Spreadvix

t 1.74 0.00 −0.93 0.00 14.5 2.4
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Figure I.1: Variations in demeaned logarithm of disaster probabilities

Plotted is the demeaned log(λt) for visual convenience. We employ equation (29) to extract the
risk-neutral disaster probability over 519 weeks in our sample of weekly put options on the S&P 500
equity index from 1/7/2011 to 12/18/2020. These weeklys on the S&P 500 equity index maintain
a fixed option maturity of 7 days (Friday to Friday).
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