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1 Introduction

Miller [1977] hypothesizes that stock prices reflect an upward bias as long as there exists divergence

of opinion among investors about stock value and pessimistic investors do not hold sufficient short

positions (i.e., short-sale constraints). In Miller’s model, overvaluation of securities is observed

because pessimists are restricted to hold zero shares although they prefer to hold a negative quantity,

and the prices of securities are mainly determined by the beliefs of optimistic investors. Since

divergence of opinion is likely to increase with firm-specific uncertainty, Miller [1977] predicts

a negative relation between uncertainty and expected return; that is, stocks with higher firm-

specific uncertainty or greater investor disagreement are anticipated to have higher prices and

lower subsequent return.1

As an important information intermediary, financial analysts predict companies’ future perfor-

mance and release research reports, including their earnings forecasts and stock recommendations.

While financial analysts play a significant role in guiding crucial investment decisions, they are

known to be subject to behavioral and psychological biases. Thus, on one hand, accurate and

objective analyst forecasts can potentially help correct investor misperceptions, but on the other

hand, biased analyst forecasts can reinforce investor misperceptions. The popular perception is that

instead of being impartial providers of unbiased opinions, financial analysts can be cheerleaders for

the firms they cover. Their impartiality may be compromised because they are also expected to

secure underwriting and other investment banking business, so they have an incentive to accommo-

date firm managers and generate positive earnings surprises (see, e.g., Dugar and Nathan [1995],

Michaely and Womack [1999], and Chan et al. [2007]).

In this paper, I propose a novel measure of divergence of opinion among investors about stock

value based on the dispersion in machines’ expected return forecasts. Compared to financial ana-

lysts, machines have neither behavioral biases nor conflicts of interest, thus I argue that machine

forecast disagreement (MFD) provides an unbiased estimate of investor disagreement. After in-

troducing a new measure of firm-specific uncertainty proxied by the degree of disagreement of

machines’ future return forecasts, I show that this newly proposed, objective measure of uncer-

tainty (or investor disagreement) does have a significant impact on the cross-sectional pricing of

individual stocks. I find that stocks with higher MFD earn significantly lower future returns than

otherwise similar stocks. In particular, a value-weighted (equal-weighted) portfolio of stocks in the

1Diether et al. [2002] show that higher dispersion in analysts’ earnings estimates, proxying for greater investor
disagreement, predicts lower future return in the cross section of individual stocks.
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highest MFD decile underperforms a portfolio of stocks in the lowest MFD decile by 5.4% (7.2%)

per annum. This return predictability is also stronger for stocks that are largely held by retail in-

vestors, that receive less investor attention, and that are costlier to arbitrage. Using the mispricing

measure of Stambaugh et al. [2015] and alternative measures of risk, I further show that high-MFD

stocks are significantly overvalued, and they have large negative alphas as well as high total, sys-

tematic, and idiosyncratic risks, rejecting a risk-based explanation in favor of a mispricing-based

explanation of the cross-sectional relation between MFD and equity returns.

I rely on 12 widely used machine learning models, including three dimension reduction models:

Principal Components Analysis (PCA), Scaled PCA (SPCA), and Partial Least Squares (PLS);

three penalized linear regressions: LASSO, Ridge, and Elastic Net (E-Net);2 three regression trees:

Random Forests (RF), Gradient Boosted Regression Tree (GBRT), and Extreme Tree (ET); and

three neural networks: Feed Forward Neural Network (FNN), Recurrent Neural Network (RNN),

and Long Short-Term Memory Neural Network (LSTM).3 I use 10 years (first six years as the

training sample and subsequent four years as the validation sample) as the rolling window to

estimate parameters of each machine learning model to obtain return forecasts of each stock in

month t using information in the 310 stock characteristics available in month t − 1. The machine

forecast disagreement (MFD) is defined as the cross-sectional standard deviation of machines’ return

forecasts scaled by the absolute value of the mean machines’ return forecasts obtained from the 12

machine learning models.4 If the cross-sectional mean of machines’ return forecasts is zero, then

the stock is assigned to the highest disagreement category. Excluding observations with a mean

return forecast of zero does not change the main findings.

I start my empirical analysis by investigating the predictive power of MFD in forecasting the

cross-sectional variation in future stock returns. Specifically, I sort stocks into 10 decile portfolios

by machine forecast disagreement during the previous month and examine the one-month- to 12-

month-ahead value-weighted and equal-weighted average returns on the resulting portfolios from

January 1976 to December 2019. I find that stocks with a higher (lower) MFD earn lower (higher)

average return in subsequent months. Furthermore, the value-weighted arbitrage portfolio that

2I do not use the OLS model, since it has the overfitting problem in high-dimensional characteristics and is known
to perform poorly in out-of-sample predictions (see, e.g., Gu et al. [2020]).

3These machine learning models are frequently used in the return forecast literature; e.g., Freyberger et al. [2020],
Gu et al. [2020], Kozak et al. [2020], Bali et al. [2020], Bianchi et al. [2021], and Huang et al. [2021]. Details of these
models are given in Appendix B2.

4I propose two additional measures of investor disagreement based on the cross-sectional dispersion in machines’
return forecast errors and the cross-sectional spread between the maximum and minimum of machines’ return fore-
casts. As will be discussed in Section 5.6, my main findings from these two alternative measures of disagreement are
very similar to those obtained from the MFD.
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takes a short position in 10% of the stocks with the highest MFD (decile 10) and takes a long

position in 10% of the stocks with the lowest MFD (decile 1) yields the one-month-ahead abnormal

returns (alphas) of 0.72%, 0.55%, 0.71%, and 0.67% per month, estimated, respectively, with the

six-factor model of Fama and French [2018], the mispricing factor model of Stambaugh and Yuan

[2017], the Q-factor model of Hou et al. [2015], and the behavioral factor model of Daniel et al.

[2020]. All alphas are significant at the 1% level, except for the mispricing factor model with the

5% level of significance. I also examine the long-term predictive power of MFD and find that the

negative relation between the machine forecast disagreement and future equity returns is not just a

one-month affair. The MFD predicts cross-sectional variation in equity returns six months into the

future. Finally, I find corroborating evidence on the significance of MFD from bivariate portfolio-

level analyses and multivariate Fama–MacBeth regressions when I control for a number of firm

characteristics and risk factors, including firm’s size, book-to-market ratio, gross profitability, asset

growth, momentum, short-term reversal, earnings surprise, illiquidity, turnover ratio, idiosyncratic

volatility, lottery demand, dispersion in analysts’ earnings estimates, and dispersion in analysts’

long-term growth forecasts.

I investigate the source of the significant alpha spread between the high-MFD and low-MFD

portfolios and find that the machine forecast disagreement premium is driven by underperformance

of high-MFD stocks, but not due to outperformance of low-MFD stocks, as the alphas on high-MFD

stocks (decile 10) are negative, economically large and highly significant, whereas the alphas on low-

MFD stocks (decile 1) are positive, but economically small and statistically insignificant. Consistent

with Miller [1977] model, my results support a mispricing-based explanation of the disagreement

premium. Using on the stock-level mispricing (MISP) measure of Stambaugh et al. [2015], I find

that high-MFD stocks, on average, have a significantly higher mispricing score than low-MFD

stocks, implying that stocks with high MFD are subject to significant overpricing. Moreover, I form

value-weighted bivariate portfolios of stocks sorted by MFD and MISP, and find that the negative

alpha spread on MFD-sorted portfolios is much stronger, both economically and statistically, for

overpriced stocks, compared to underpriced and fairly priced stocks.

I also examine the predictive power of the MFD during the periods with and without earnings

announcements. I find that the long-short excess returns and alphas on MFD-sorted portfolios in

earnings announcement periods are almost three times higher than the long-short excess returns

and alphas in non-earnings announcement periods. Thus, the evidence supports the mispricing

argument that investors do not fully incorporate the MFD-driven return predictability information
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into their earnings forecasts and are therefore surprised when earnings are realized.

In addition to the mispricing-based explanation, I provide complementary economic mecha-

nisms along the lines of informational frictions, limits to arbitrage, and investor inattention. Hong

and Stein [1999] propose a theoretical model in which gradual diffusion of information among in-

vestors explains the observed predictability of stock returns. In their model, at least some investors

can process only a subset of publicly available information because they have either limited data-

processing capabilities or limited computing resources. Moreover, using publicly available data,

processing all possible complex forecasting models (e.g., machine learning algorithms) and imple-

menting a suggested investment strategy may be costly (Hirshleifer and Teoh [2003]), and there are

limits to arbitrage (Shleifer and Vishny [1997]). Due to informational frictions, costly arbitrage,

and/or investors’ limited attention, new informative signals are incorporated into stock prices par-

tially because at least some investors do not adjust their demand by recovering informative signals

from firm fundamentals or observed prices. As a result of under- or delayed-reaction to information

by some investors, stock returns exhibit predictability.

Thus, I hypothesize that the return predictability is concentrated in stocks that are largely held

by retail investors, that receive less investor attention, and that are costlier to arbitrage. Earlier

studies show that less sophisticated individual investors have more limited attention and hence I

argue that the informative signals provided by the MFD for stocks largely held by retail investors

are not incorporated into prices quickly. However, sophisticated institutional investors, who are

able to detect and process information generated by the MFD, can take advantage of mispricing in

these stocks so that the information produced by the MFD will be promptly incorporated into stock

prices. Since the information is integrated into the prices much faster in the presence of informed

investors, there is little room for predictability among stocks with high institutional ownership and

low arbitrage costs. Thus, the slow diffusion of information and the resulting return predictability

should be more pronounced for stocks with low institutional ownership, low investor attention

characteristics, and high arbitrage costs.

To provide a better understanding of the economic mechanisms behind the return predictabil-

ity, I test whether the predictive power of the MFD is explained by investors’ sophistication,

informational frictions, investors’ limited attention, and/or limits to arbitrage. I find that the

disagreement premium is much stronger, both economically and statistically, for stocks predomi-

nantly held by retail investors, whereas the return predictability is much weaker for stocks largely

held by institutional investors, confirming that investors’ sophistication and informational frictions
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play a significant role in the predictive power of the machine forecast disagreement. When test-

ing the significance of attention mechanism, I find that the abnormal returns on stocks with low

investor attention are indeed larger than the abnormal returns on stocks with high investor at-

tention, where the proxies of investor attention are the institutional ownership, analyst coverage,

and absolute earnings surprise.5 I also investigate the impact of costly arbitrage and find that the

abnormal returns on stocks with high arbitrage costs are greater than the abnormal returns on

stocks with low arbitrage costs, where the proxies for limits-to-arbitrage include the idiosyncratic

volatility, illiquidity, and market capitalization. Overall, my results indicate that the MFD-based

return predictability is likely due to informational frictions, investors’ limited attention, and limits

to arbitrage.

The remainder of the paper is organized as follows. Section 2 provides a brief literature review

and outlines the contribution. Section 3 describes the data and variables. Section 4 evaluates the

empirical performance of machine learning models. Section 5 presents the main empirical results

on the cross-sectional equity return predictability. Section 6 investigates the sources of return

predictability. Section 7 further distinguishes between risk and mispricing based explanations.

Section 8 concludes the paper.

2 Related Literature

This paper is related to the extensive literature on heterogeneous beliefs. Since early contributions

of Miller [1977] and Harrison and Kreps [1978], heterogeneous belief models have been frequently

used to investigate a number of crucial issues in financial markets, including financial bubbles and

differences in the beliefs of equity market investors (e.g., Diether et al. [2002], Chen et al. [2002],

Hong and Stein [2003], and Scheinkman and Xiong [2003]). This study contributes to the literature

on heterogeneous beliefs by introducing a novel, objective measure of investor disagreement based

on machines’ expected return forecasts and show that this newly proposed measure, MFD, signifi-

cantly predicts the cross-sectional variation in future equity returns. It also demonstrates that the

predictive power of MFD is distinct from the existing measures of disagreement and is not explained

by established return predictors, such as size, value, momentum, investment, profitability, liquidity,

volatility, and dispersion in analysts’ earnings estimates.

5See, e.g., Hou and Moskowitz [2005], Peng and Xiong [2006], Hong et al. [2007], Cohen and Frazzini [2008], Fang
and Peress [2009], Hirshleifer et al. [2009], Da et al. [2011], Gervais et al. [2001], Hirshleifer et al. [2013], Bali et al.
[2014], Hirshleifer et al. [2018], and Han et al. [2021].
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Chen et al. [2002] show that when breadth of equity ownership is low (i.e., when few investors

have long positions), the short-sale constraint is binding tightly, so prices are high relative to

fundamentals and lower breadth should predict lower future returns. Diether et al. [2002] use

dispersion in analysts’ earnings forecasts as a proxy for divergence of opinion and find that stocks

with higher dispersion in analysts’ earnings forecasts generate significantly lower future returns than

those with lower dispersion. Johnson [2004] questions the interpretation of Diether et al. [2002]

results, and argues that dispersion in analysts’ earnings estimates can proxy for higher firm-specific

idiosyncratic risk and attributes it to higher leverage. Anderson et al. [2005] find that dispersion in

analyst long-term growth forecasts shows a negative and statistically significant predictive power

on future stock returns. Boehme et al. [2006] examine the significance of simultaneous effects of

differences of opinion and short-sale constraints in the cross-sectional pricing of individual stocks

and provide evidence of significant overvaluation for stocks that are subject to both conditions

simultaneously.

Atmaz and Basak [2018] show that, in equilibrium, disagreement affects stock returns via two

channels. The first channel is a direct effect: disagreement represents uncertainty and investors

require a higher expected return to hold a stock when disagreement on the stock increases, sug-

gesting a positive disagreement-return relation. The second channel is an indirect effect: investor

disagreement affects stock returns via an amplification effect on the average bias. That is, higher

disagreement leads to higher average bias and more overvaluation, thereby suggesting a negative

disagreement-return relation. With these two channels, Atmaz and Basak [2018] reconcile the mixed

disagreement-return relation documented in the literature.6 Since investors, regardless of whether

they are sophisticated or not, are generally upward biased,7 the second channel is more likely to

dominate the first channel, thereby explaining why my newly proposed measure of disagreement

(MFD) negatively predicts the cross-section of future equity returns.

This paper also extends the literature on the usage of machine learning techniques in empirical

asset pricing. Kelly et al. [2019] apply instrumented principal component analysis to model the

cross-section of returns which allows for latent factors and time-varying loadings. Gu et al. [2020]

perform a comparative analysis of machine learning methods to measure equity risk premium based

on a large set of stock characteristics. Neuhierl et al. [2021] use a large number of firm and option

characteristics to predict the cross-section of future stock returns. Kozak et al. [2020] impose an

6See, e.g., Chen et al. [2002]; Diether et al. [2002]; Yu [2011]; Carlin et al. [2014]
7See, e.g., Barber and Odean [2008]; Edelen et al. [2016]; DeVault et al. [2019]; Engelberg et al. [2020]
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economically motivated prior on stochastic discount factor coefficients that shrinks contributions of

low-variance principal components for the cross-section of stock returns and Chen et al. [2020] add

to these insights using deep neural networks to estimate an asset pricing model for individual stock

returns. Martin and Nagel [2021] show that asset returns may appear predictable in-sample when

analyzing the economy ex-post and stress the importance of out-of-sample tests. Feng et al. [2020]

propose a new model selection method which accounts for model selection mistakes that produce

a bias due to omitted variables, and Lettau and Pelger [2020] construct a new estimator that

generalizes principle component analysis by including a penalty on the pricing error in expected

returns. A nonparametric method to dissect characteristics based on the adaptive group Lasso is

proposed by Freyberger et al. [2020]. Giglio et al. [2021] perform “thousands of alpha tests” to

develop a new framework to rigorously perform multiple hypothesis testing in linear asset pricing

models.8

Although the majority of articles applies machine learning models to predict the cross-section

of individual stock returns, they have so far focused on the economic and statistical significance of

expected return forecasts. This study contributes to the literature by focusing on the dispersion in

expected return forecasts generated by alternative machine learning models. I propose a novel mea-

sure of divergence of opinion among investors based on the cross-sectional dispersion in machines’

return forecasts, which is free from behavioral biases and conflicts of interest that can be observed

in the existing measures of disagreement (e.g., standard deviation of analysts’ earnings estimates).

This paper not only shows that machine learning models significantly disagree on their future re-

turn forecasts, but the degree of disagreement also varies across small vs. big stocks, liquid vs.

illiquid stocks, stocks with high vs. low institutional ownership, analyst coverage, and so on. More

importantly, I present the first empirical evidence that the machine forecast disagreement predicts

future equity returns and I provide the economic underpinnings of this disagreement premium as

well.

8Recent research also expands the application of machine learning models for the prediction of other asset classes.
Kelly et al. [2020] propose a conditional factor model for corporate bond returns resting on instrumented principal
component analysis. Bali et al. [2020] find that machine learning models substantially improve the out-of-sample
performance of stock and bond characteristics when predicting the cross-section of corporate bond returns. Bianchi
et al. [2021] apply similar techniques to Treasury securities, whereas Filippou et al. [2020] employ them in the context
of exchange rates. DeMiguel et al. [2021] show that machine learning helps to select future outperforming mutual
funds and Wu et al. [2021] establish similar conclusions for hedge funds. Finally, Li and Rossi [2020] apply machine
learning to select mutual funds on the basis of their exposure to a large set of various stock characteristics. Goyenko
and Zhang [2020] and Bali et al. [2021] use machine learning models to predict the cross-section of individual option
returns.
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3 Data and Variables

My sample includes common stocks trading at the NYSE, AMEX, and NASDAQ with a market

value recorded at the Center for Research in Security Prices (CRSP) in the previous month and a

non-missing value for common equity in the firm’s annual financial statement. I obtain monthly

stock returns from CRSP and accounting information from Compustat. I exclude financial and

utilities firms. To reduce the effect of small and illiquid stocks, I also exclude the low-priced stocks

trading below $5 per share.9 I follow Shumway [1997] to adjust stock returns for delisting. Specifi-

cally, if a delisting return is missing and the delisting event is performance-related, I set the delisting

return at −30%. Using the data available at CRSP, Compustat, I/B/E/S, and researchers’ websites,

I construct a total of 310 stock characteristics. The stock characteristics are obtained from Hou

et al. [2015], Haugen and Baker [1996], Lewellen [2015], Harvey et al. [2016], McLean and Pontiff

[2016], Green et al. [2017], Freyberger et al. [2020], and Han et al. [2020], among others. Similarly

to Hou et al. [2015], Harvey et al. [2016], McLean and Pontiff [2016], Freyberger et al. [2020], and

Han et al. [2020], I categorize the individual stock characteristics into six broader subgroups: value,

momentum, investment, profitability, intangibles, and frictions. The characteristics and subgroups

are listed in Section B of the online appendix.

My sample covers the period from July 1966 to December 2019. I use 10 years (first six years as

the training sample and subsequent four years as the validation sample) as the rolling window for

estimating the parameters and tuning the hyperparameters of machine learning models, so that I

compute the month-t MFD – using the month t−1 characteristics – as the cross-sectional standard

deviation of the machines’ return forecasts scaled by the absolute value of the cross-sectional mean

of the machines’ return forecasts, and then I conduct out-of-sample cross-sectional asset pricing

tests for the period July 1976 – December 2019. Since the analysts’ earnings forecast (long-term

growth forecast) data are available from the beginning of 1976 (1982), the asset pricing tests that

include dispersion in analysts’ earnings forecasts (long-term growth forecasts) also start in July

1976 (July 1982). The asset pricing tests are conducted using a total of 2,085,442 firm-level return

observations spanning the period from July 1976 to December 2019.

For each month, I winsorize all stock characteristics at the 1st and 99th cross-sectional per-

centiles. Some characteristics have missing values for some months. I require at least 20% of the

9To reduce the impact of micro-cap firms, as a further robustness check, I exclude firms with market capitalization
below the 20th percentile of the NYSE size breakpoints. As will be discussed later in the paper, my main findings
remain intact from alternative stock samples.
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characteristic observations for that month to be non-missing. When a characteristic is included, I fill

in any missing values for the month with the cross-sectional mean (median for indicator variables)

of the available observations. Without loss of generality, before estimating the forecasting mod-

els, I standardize each characteristic to have a monthly cross-sectional mean of zero and standard

deviation of one.

In the cross-sectional regression analysis, I control for other firm characteristics that have been

shown to predict future returns. Specifically, SIZE is the firm’s market capitalization computed as

the logarithm of the market value of the firm’s outstanding equity at the end of month t−1. BM is

the logarithm of the firm’s book value of equity divided by its market capitalization, where the BM

ratio is computed following Fama and French [2008]. Firms with negative book values are excluded

from the analysis. Short-term reversal (STR) is the stock’s one-month lagged return. MOM is the

stock’s cumulative return from month t− 12 to month t− 2 (skipping the STR month), following

Jegadeesh and Titman [1993]. Gross Profitability (GP) is the firm’s gross profitability, defined as

revenue minus cost of goods sold scaled by total assets, following Novy-Marx [2013]. Asset Growth

(AG) is defined as the percent growth rate of total assets between two consecutive fiscal years,

following Cooper et al. [2008]. The monthly turnover ratio (TURN) is calculated as the number

of shares traded divided by the total number of shares outstanding in month t − 1. The monthly

illiquidity (ILLIQ) measure is computed as the absolute daily return divided by daily dollar trading

volume, averaged in month t − 1, following Amihud [2002]. The idiosyncratic volatility (IVOL) is

defined as the standard deviation of daily residuals estimated from the regression of daily excess

stock returns on the daily market, size, and value factors of Fama and French (1993) in month

t − 1, following Ang et al. [2006]. The standardized unexpected earnings (SUE) is defined as the

actual earnings in the current quarter minus earnings four quarters ago, scaled by stock price in

the current quarter, following Livnat and Mendenhall [2006]. The lottery payoff is proxied by the

average of the five highest daily returns (MAX) in month t − 1, following Bali et al. [2011]. DAE

is the standard deviation of analysts’ earnings forecasts scaled by the absolute value of the mean

analysts’ earnings forecasts, following Diether et al. [2002]. DALG is the standard deviation of the

analysts’ long-term earnings growth rate forecasts, following Anderson et al. [2005].

Panel A of Table 1 presents descriptive statistics for the main cross-sectional variables. Con-

cerning my key variable of interest, the sample mean of the MFD is 2.49 with a standard deviation

of 1.28. The median of the MFD is 2.04 – somewhat lower than the mean – indicating a positively

skewed MFD distribution with the minimum and maximum values of 0.07 and 5.71, respectively.

9



Panel B of Table 1 includes the panel-level Pearson (Spearman) correlations below (above) the

diagonal. The first column and the first row report a negative relation between the MFD and

one-month-ahead returns, Ri,t+1. Consistent with the literature, I find a negative relation between

one-month-ahead returns and size, asset growth, past one-month return, idiosyncratic volatility,

lottery payoff, and analyst dispersion, whereas there is a positive relation between one-month-

ahead returns and gross profitability, book-to-market ratio, past 12-month return, illiquidity, and

earnings surprise. These correlation statistics confirm the presence of size, value, momentum, in-

vestment, profitability, short-term reversal, earnings momentum, illiquidity, investor disagreement,

idiosyncratic volatility, and lottery demand effects in my sample.

The second column and the second row in Panel B of Table 1 show that smaller and less

liquid stocks with higher idiosyncratic volatility and higher analyst disagreement also have higher

MFD. The positive correlations between the MFD and the existing measures of analysts’ earnings

forecasts (DAE and DALG) indicate that the machine forecast disagreement is a sensible measure

of divergence of opinion among investors about stock value. The positive (negative) correlation of

the MFD with idiosyncratic volatility (size) also suggests that the machine forecast disagreement

is a reasonably proxy for information uncertainty (see, e.g., Zhang [2006]).

Based on these results, I conjecture that the MFD can be viewed as a measure of “firm-specific

uncertainty” as higher MFD implies higher information uncertainty or higher investor disagreement

about the firm value. Thus, when I aggregate a firm-level uncertainty measure, I’m supposed to

obtain a proxy for market-level uncertainty if the MFD truly captures some form of uncertainty,

ambiguity, or disagreement about the firm value. To test this hypothesis, I construct an aggregate

measure of the MFD by calculating the value-weighted and equal-weighted average of the stock-level

MFD measures. Figure 1 displays the monthly time-series plot of the aggregate MFD measures

along with the NBER recession dates. The MFD indices in Figure 1 are standardized to have a

zero mean and unit standard deviation. A notable point in Figure 1 is that the value-weighted and

equal-weighted MFD measures are highly correlated; the correlation is 95% over the sample period

July 1976–December 2019. Another notable point in Figure 1 is that the aggregate MFD indices

are generally higher during bad states of the economy and financial market downturns. I also

calculate the correlations between the aggregate MFD and the existing measures of market-level

or economy-wide uncertainty; the financial and macroeconomic uncertainty measures of Jurado

et al. [2015], the economic policy uncertainty measure of Baker et al. [2016], and the S&P100

option implied volatility index (VXO). As reported in Panel C of Table 1, the correlation between
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the macroeconomic uncertainty measure of Jurado et al. [2015] and the equal-weighted (value-

weighted) MFD index is 0.52 (0.35). The correlation between the financial uncertainty measure

of Jurado et al. [2015] and the equal-weighted (value-weighted) MFD index is 0.53 (0.48). The

correlations between the aggregate MFD and the economic policy uncertainty measure of Baker

et al. [2016] and the VXO are roughly 0.50. These results indicate that the aggregate MFD index

is a sound measure of market-level uncertainty.

4 Empirical Performance of Machine Learning Models

Following Gu et al. [2020], I assess the empirical performance of a variety of machine learning

models, including principal components analysis (PCA), Scaled PCA (SPCA), Partial Least squares

(PLS), LASSO, Ridge, Elastic Net (E-Net), random forests (RF), Gradient Boosted Regression Tree

(GBRT), Extreme Tree (ET), Feed Forward Neural Network (FNN), Recurrent Neural Network

(RNN), and Long Short-Term Memory Neural Network (LSTM).

4.1 Evaluating the Out-of-sample Performance of Machine Learning Models

Following Gu et al. [2020], I use the out-of-sample R-squared as the performance metric to assess

the predictive power of individual stock return predictors,

R2
OS = 1−

∑
(i,t)∈T3 (ri,t+1 − r̂i,t+1)2∑

(i,t)∈T3 r
2
i,t+1

(1)

The R2
OS statistic pools prediction errors across stocks and over time into a grand panel-level

assessment of each model, and it measures the proportional reduction in mean squared forecast

error (MSFE) for each model relative to a naive forecast of zero excess return benchmark, which

assumes that the one-month-ahead expected return on stocks equals the time t + 1 risk-free rate

(see Gu et al. [2020]). To estimate the out-of-sample R2
OS , I follow the commonly used approach in

the literature and use 10 years (first six years as the training sample T1 and subsequent four years

as the validation sample T2) as the rolling window for estimating the parameters and tuning the

hyperparameters of machine learning forecasting models. The “test” subsample (from July 1976

to December 2019, T3) is used to evaluate a model’s out-of-sample forecasting performance.

I use the mean squared forecast error (MSFE)-adjusted statistic of Clark and West (2007) to test

the statistical significance of R2
OS . Considering the potentially strong cross-sectional dependence

among individual excess stock returns, I employ the modified MSFE-adjusted statistic based on
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the cross-sectional average of prediction errors from each model instead of prediction errors among

individual returns. The p-value from the MSFE-adjusted statistic tests the null hypothesis that

the MSFE of a naive forecast of zero excess return is less than or equal to the MSFE of a machine

learning model against the one-sided (upper-tail) alternative hypothesis that the MSFE of a naive

forecast of zero excess return is greater than the MSFE of a machine learning model (H0: R2
OS ≤ 0

against HA: R2
OS > 0).

Table OA1 presents the monthly R2
OS (in percentage) for the entire pooled sample of stocks

using all the 310 stock characteristics as covariates. Compared to the dimension reduction models,

regression trees, and neural network models, the penalized linear regressions – LASSO, Ridge, and

E-Net – perform relatively poorly with the respective R2
OS values of 0.13%, 0.08%, and 0.13%. By

forming a few linear combinations of predictors via dimension reduction, PCA, SPCA, and PLS

improve the R2
OS to 0.37%, 0.48%, and 0.46%, respectively. Unlike the penalized linear models,

regression trees are fully nonparametric and can reduce overfitting in individual bootstrap samples,

and make the predictive performance more stable. Consistent with this prediction, RF, GBRT,

and ET show a significant increase in R2
OS to 0.51%, 0,54%, and 0.56% per month, respectively.

In addition to nonparametric regressions, I investigate the performance of different neural network

models, including feed forward neural network (FFN), recurrent neural network (RNN), and long

short-term memory neural network (LSTM). As a typical neural network, the feed forward neural

network (FFN) produces more flexible prediction approach by adding hidden layers between the

inputs and output layer that aggregates hidden layers into the outcome prediction. The recurrent

neural network (RNN) processes sequential data such as stock prices and returns. The long short-

term memory neural network (LSTM) captures long-term dependencies as a flexible hidden state

space model for a large dimensional system. FFN, RNN, and LSTM model produce the largest R2
OS

values of 0.57%, 0.58%, and 0.59% per month, compared to the other machine learning models.

4.2 Diebold and Mariano (1995) Test

To compare the out-of-sample predictive power of two methods, I use the modified Diebold and

Mariano (1995) test, which accounts for the potentially strong cross-sectional dependence among

individual returns. Specifically, the modified Diebold-Mariano statistic is defined as:

DM12 = d̄12/σ̂d̄ (2)
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where d̄12 and σ̂d̄ are, respectively, the time-series mean and Newey-West standard error of d12,t+1

over the testing sample. d12,t+1 is the forecast error differential between the two methods, (1) and

(2), calculated as the cross-sectional average of forecast error differentials from each model over

each period t+ 1,

d12,t+1 =
1

n3,t+1

n3∑
i=1

((
ê

(1)
i,t+1

)2
−
(
ê

(2)
i,t+1

)2
)

(3)

where ê
(1)
i,t+1 and ê

(2)
i,t+1 are the return forecast errors for individual asset i at time t+1 generated by

two methods, and n3,t+1 is the number of assets in the testing sample.

Table OA2 reports the Diebold-Mariano test statistics for pairwise comparisons of a column

model versus a row model. A positive statistic indicates that the column model outperforms the

row model. Table OA2 shows that regression trees and neural networks outperform penalized

linear regressions, showing positive and statistically significant test statistic with the Diebold-

Mariano test statistics ranging from 2.08 to 3.29. Comparing the performance of machine learning

methods in the same category, Table OA2 shows that there is little difference in the performance of

dimension reduction models (PCA, SPCA, and PLS), penalized linear regressions (LASSO, Ridge,

and E-Net), regression trees (RF, GBRT, and ET), and neural networks (FFN, RNN, and LSTM),

as the test statistics are not significant. Finally, the last column of Table OA2 shows that the

LSTM model produces large and significant statistical improvements over most individual machine

learning models.

4.3 Machine Learning Portfolios Constructed Using 310 Stock Characteristics

To further investigate the economic significance of the machine learning models, I form long-short

portfolios based on the machine learning expected return forecasts using the 310 stock character-

istics. Specifically, I sort stocks into decile portfolios based on each model’s forecasts of the one-

month-ahead returns and then calculate the one-month-ahead equal-weighted and value-weighted

average realized returns of the decile portfolios. Table OA3 of the online appendix reports the

monthly performance results. ”Low” is the decile portfolio with the lowest one-month-ahead ex-

pected return forecast (decile 1), ”High” is the decile portfolio with the highest one-month-ahead

expected return forecast (decile 10), and ”High-Low” denotes the long-short portfolio that buys

the highest expected return stocks in decile 10 and sells the lowest expected return stocks in decile

1.
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Table OA3 presents the equal-weighted and value-weighted one-month-ahead average realized

returns on the long-short portfolios. Consistent with the findings of Gu et al. [2020], Panel A of

Table OA3 shows that the equal-weighted portfolios produce positive, economically large and highly

significant average return spreads from all machine learning models; in the range of 1.35% and 3.49%

per month. The top two best performing hedge portfolios are generated by the Long Short-Term

Memory Neural Network (LSTM) and the Recurrent Neural Network (RNN), with the monthly

return spread of 3.49% (t-stat.=7.10) and 3.48% (t-stat.=6.72), respectively. Consistent with my

earlier findings using R2
OS as the performance metric, the penalized linear regression models perform

least well, although the equal-weighted average return spreads obtained from LASSO, Ridge, and

E-Net are still very large, ranging from 1.35% (t-stat.=2.62) to 1.60% (t-stat.=3.09).

Panel B of Table OA3 shows that the relative performance of machine learning models remains

the same in the value-weighted portfolios which produce economically smaller return spreads than

the equal-weighted portfolios, but the return spreads are still very large in the value-weighted

portfolios. Again, the best performing hedge portfolios are generated by the neural network models

– FFN, RNN, and LSTM – with the respective value-weighted monthly return spreads of 1.86%

(t-stat.=3.08), 2.05% (t-stat.=3.39), and 1.89% (t-stat.=3.70). Consistent with my findings from

the equal-weighted portfolios, the penalized linear regression models – LASSO, Ridge, and E-

Net – perform least well, with the respective value-weighted monthly return spreads of 0.86%

(t-stat.=1.47), 0.69% (t-stat.=1.33), and 0.85% (t-stat.=1.40).

Table OA4 of the online appendix reports the Fama and French [2018] six-factor alphas on the

long-short portfolios of stocks sorted by the machine learning models’ one-month-ahead expected

return forecasts. Panel A of Table OA4 shows that controlling for the market, size, value, in-

vestment, profitability, and momentum factors of Fama and French [2018] does not reduce much

the economic and statistical significance of the return spreads on the equal-weighted portfolios.

However, as presented in Panel B of Table OA4, the value-weighted portfolios paint a different

picture. Although the relative performance of the 12 machine learning models remain almost iden-

tical, the six-factor monthly alpha spreads on the value-weighted portfolios generated by the PLS,

LASSO, Ridge, and E-Net models are not statistically significant; ranging from 0.10% (t-stat.=0.75)

to 0.31% (t-stat.=0.97). Similar to my earlier findings, the best performing hedge portfolios are

again generated by the neural network models – FFN, RNN, and LSTM – with the respective

value-weighted monthly alpha spreads of 1.37% (t-stat.=4.90), 1.40% (t-stat.=5.04), and 1.42%

(t-stat.=4.70).
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5 Empirical Results

In this section, I conduct parametric and nonparametric tests to assess the predictive power of

the machine forecast disagreement (MFD) over future stock returns. First, I present results from

univariate portfolio-level analysis. Second, I investigate the mispricing-based explanation of the

disagreement premium. Third, I report average stock characteristics of the MFD-sorted decile

portfolios. Fourth, I conduct bivariate portfolio-level analyses to assess the predictive power of

the MFD after controlling for well-known stock characteristics and risk factors. Fifth, I present

firm-level Fama-MacBeth cross-sectional regression results. Finally, I run a battery of robustness

checks using alternative measures of the MFD.

5.1 Univariate portfolio-level analysis

To construct the long-short portfolio, for each month from July 1976 to December 2019, individual

stocks are sorted by the MFD into decile portfolios. I then compute the one-month-ahead value-

and equal-weighted average excess return of each decile portfolio. To examine the cross-sectional

relation between the MFD and future stock returns, I form a long-short portfolio that takes a long

position in the lowest decile of MFD and a short position in the highest decile of MFD.

Table 2 reports the average monthly excess returns of each decile portfolio, and the long-

short portfolio (in excess of the one-month Treasury bill rate). I also report the abnormal returns

(alphas) estimated with various factor models, including the capital asset pricing model (CAPM)

with the market (MKT) factor, the six-factor model (FF6) of Fama and French [2018] with the

MKT, size (SMB), value (HML), investment (CMA), profitability (RMW), and momentum (MOM)

factors, the q4-factor model (HXZ) of Hou et al. [2015] with the MKT, size (SMBQ), investment

(I/A), and profitability (ROE) factors, the mispricing factor model (SY) of Stambaugh and Yuan

[2017] with the MKT, SMB, management (MGMT), and performance (PERF) factors, and the

behavioral factor model (DHS) of Daniel et al. [2020] with the MKT, post-earnings-announcement

drift (PEAD), and financing (FIN) factors. Controlling for these risk and mispricing factors helps

to ensure that the MFD indeed contains incremental predictive power beyond these well-known

equity return predictors.

In general, the excess returns and alphas of the MFD-sorted portfolios decrease from decile 1 to

decile 10. The long-short portfolio that short-sells 10% of the stocks with the highest MFD (decile

10) and buys 10% of the stocks with the lowest MFD (decile 1) earns a value-weighted (equal-
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weighted) average return of 0.45% (0.60%) per month with a t-statistic of 2.94 (4.04), translating

into an annualized return of 5.40% (7.20%).10 Controlling for the robust risk and mispricing factors

does not change the magnitude and statistical significance of the return spreads on the MFD-sorted

portfolios for most of the factor models. The only exception is the alpha of the long-short portfolio

under the mispricing factor model, where the alpha decreases from 0.69% (CAPM) to 0.55% (SY

model) per month and the corresponding t-statistic decreases from 3.36 to 2.54 for the value-

weighted portfolio, suggesting that the return predictability is potentially driven by mispricing

rather than compensation for risk. Finally, the significant relation between the MFD and future

returns is largely coming from the short leg of the arbitrage portfolio as the economic magnitude

and statistical significance of the abnormal returns (alphas) are larger among the stocks in the short

leg than those in the long leg. This implies that high-MFD firms are overvalued relative to firms

with lower MFD, perhaps due to higher firm-specific uncertainty or higher investor disagreement

about stock value of high-MFD firms as well as higher arbitrage costs.

Next, I examine the persistence of the rank of MFD and the persistence of the MFD-based

return predictability. If the rank of MFD is persistent, investors would be able to learn from the

past and I would not be able to detect mispricing over a long period of time; i.e., mispricing and

arbitrage opportunity decay over time. Table 3 presents the probability of staying in the same

MFD group or moving to any of the other nine MFD groups next year. Specifically, I present the

average probability that a stock in decile i (defined by the rows) in month t will be in decile j

(defined by the columns) in month t + 12. All the probabilities in the transition matrix should

be approximately 10% (ten portfolios) if the evolution for MFD for each stock is random and the

relative magnitude of MFD in one period has no implication about the relative MFD values next

year. However, Table 3 shows that 63% of stocks in the lowest MFD decile (decile 1) in month

t continue to be in the same decile in month t + 12. Similarly, 66% of the stocks in the highest

MFD decile (decile 10) in month t continue to be in the same decile in month t+ 12. These results

indicate that firm-specific uncertainty (or investor disagreement) proxied by the MFD is a highly

persistent stock characteristic.

The results from transition matrix reported in Table 3 suggest that investors underprice (over-

price) securities with the lowest (highest) MFD in the past with the expectation that this behavior

will persist in the future. If the machine forecast disagreement was a characteristic that evolved

10The t-statistics reported in my tables are Newey and West [1987] adjusted with six lags to control for het-
eroskedasticity and autocorrelation.
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randomly over the months, I would expect to see no relation between the MFD and future stock

returns. The fact that the MFD is persistent and it has a robust, incremental predictive power

for the cross-section of future stock returns suggests the possibility that investors underestimate

the magnitude of the cross-sectional persistence uncovered in Table 3. I delve further into this

possibility in the test of long-term portfolio returns.

I investigate the long-term predictive power of MFD by calculating the Fama-French (2018)

six-factor alphas of the MFD-sorted portfolios from two to 12 months after portfolio formation.

The results are presented in Table 4. The six-factor alpha spread remains economically large and

highly significant during the second, third, and fourth month after portfolio formation, with the

respective monthly alpha spreads of −0.56% (t-stat.=−2.83), −0.51% (t-stat.=−2.29), and −0.47%

(t-stat.=−2.08). The predictive power of MFD on future returns diminishes as one moves further

away from the portfolio formation month and becomes insignificant after the six month. These

results show that the negative cross-sectional relation between the MFD and future returns is not

just a one-month affair and the underreaction to firm-specific uncertainty (or MFD-driven infor-

mation) persists several months into the future, which is consistent with the theoretical evidence

of Hong and Stein [1999] as a consequence of the gradual diffusion of information into stock prices.

5.2 Testing the mispricing hypothesis

The results so far suggest that high-MFD stocks tend to be overvalued relative to low-MFD stocks,

but I have not yet provided any direct empirical evidence that high-MFD stocks are indeed over-

valued. I test this hypothesis by computing the mispricing score of the stocks in MFD-sorted

portfolios. Specifically, I use the stock-level mispricing measure (MISP) of Stambaugh et al. [2015]

to identify if high-MFD stocks are indeed overvalued.11 I also conduct independent double sorts

based on individual stocks’ MISP and MFD; that is, stocks are grouped into 10 decile (5 quintile)

portfolios based on independent ascending sorts of MFD (MISP) and the intersections of each of the

decile MFD and the quintile MISP portfolios are used to form bivariate portfolios. I then compute

the Fama and French [2018] six-factor alpha of each of the 50 (5×10) resulting MISP&MFD sorted

intersection portfolios.

Table 5, Panel A, shows that the high-MFD stocks indeed have a higher average mispricing

11As discussed in Stambaugh et al. [2015], each month, individual stocks are ranked independently based on 11
prominent equity return predictors (net stock issues, composite equity issues, accruals, net operating assets, asset
growth, investment-to-assets, distress, O-score, momentum, gross profitability, and return on assets) in such an order
that a higher rank is associated with lower one-month-ahead stock returns. The mispricing measure (MISP) is defined
as the arithmetic average of the ranks of the 11 return predictors.
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score than the low-MFD stocks. Furthermore, as reported in the last column of Panel A, Table

5, the 10-1 difference in the average mispricing scores between the high- and low-MFD stocks is

statistically significant at the 1% level with a t-statistic of 3.50. Consistent with Miller [1977],

this evidence supports the mispricing argument that the high-MFD stocks with higher firm-specific

uncertainty (or greater investor disagreement) are indeed overvalued.

Next, I investigate whether the cross-sectional relation between the MFD and future returns is

stronger for overvalued vs. undervalued stocks. Specifically, I calculate the Fama and French [2018]

six-factor alphas of each of the 50 (5× 10) MISP&MFD sorted value-weighted portfolios. The last

two columns in Panel B of Table 5 present the six-factor alpha spreads between the high-MFD

and low-MFD decile portfolios within each MISP quintile along with the Newey-West t-statistics in

parentheses. A notable point in Table 5, Panel B, is that the alpha spread is highest at −1.30% per

month (t-stat.=−4.89) for overvalued stocks (high-MISP quintile). Moreover, the alpha spread on

MFD-sorted portfolios of overvalued stocks is economically and statistically greater than the alpha

spreads on MFD-sorted portfolios of all other stocks – undervalued or (relatively) fairly valued

stocks in the MISP quintiles 1 through 4.12 Overall, the results in Table 5 confirm Miller [1977]

hypothesis that the disagreement premium is stronger for overpriced stocks, i.e., stocks with higher

investor disagreement are subject to a higher degree of mispricing and lower subsequent return.

5.3 Average portfolio characteristics

I investigate which firm characteristics can potentially explain the negative relation between the

MFD and future stock returns. To do so, I sort stocks by the MFD into decile portfolios each month

and report the time-series averages of the cross-sectional medians of various firm-specific character-

istics for each decile. Table 6 presents the average stock characteristics of each MFD-sorted decile

portfolio and the long-short portfolio. The characteristics include the machine forecast disagree-

ment (MFD), log market capitalization (SIZE), log book-to-market ratio (BM), asset growth (AG),

gross profitability (GP), medium-term stock momentum (MOM), short-term reversal (STR), illiq-

uidity (ILLIQ), turnover (TURN), standardized unexpected earnings (SUE), idiosyncratic volatility

(IVOL), lottery demand (MAX), dispersion in analysts’ earnings forecasts (DAE), and dispersion

in analysts’ long-term growth forecasts (DALG).

12The differences between the six-factor alphas of the zero-cost MFD-sorted portfolios for MISP5 vs. the other
MISP quintiles turn out to be economically large and statistically significant. As shown in the lower panel of Table
5, Panel B, the t-statistics between the six-factor alpha of MISP5 and the six-factor alphas of MISP1 to MISP4 are
−1.92, −3.29, −2.73, and −1.71, respectively.
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By construction, the average MFD increases monotonically from decile 1 to decile 10 and the 10-

1 difference of the average MFD is economically large at 0.34 and highly significant (t-stat.=247.01),

indicating significant cross-sectional variations in the machine forecast disagreement of individual

stocks. The last two rows in Table 6 show that as the MFD increases across the deciles, the

established measures of investor disagreement – DAE and DALG – increase as well, indicating a

positive correlation between the MFD and the existing measures of divergence of opinion. Earlier

studies also find that small, illiquid, lottery-like stocks with high idiosyncratic volatility exhibit high

information uncertainty (e.g., Zhang [2006], Kumar [2009], and Bali et al. [2011]). Consistent with

the literature, Table 6 shows that the stocks with higher MFD (or higher firm-specific uncertainty)

are indeed smaller, less liquid, and have higher idiosyncratic volatility and stronger lottery features.

The literature provides clear evidence that the firm-specific attributes considered in Table 6 are

instrumental in explaining the cross-section of expected stock returns. Stocks with higher MFD,

higher asset growth, lower profitability, lower momentum returns, lower earnings surprise, higher

idiosyncratic volatility, and higher MAX tend to have lower future returns. Considering the prior

findings in the literature and the patterns that the firm-specific attributes exhibit across the MFD

deciles, one may think that investment, profitability, momentum, post-earnings-announcement drift,

idiosyncratic volatility, and/or the lottery demand effect drive the significantly negative relation

between the MFD and future stock returns. Thus, in the next two sub-sections, I control for these

well-known return predictors in bivariate portfolio sorts and firm-level cross-sectional regressions

to further test whether the significant relation between the MFD and future stock returns remains

intact after accounting for these established, robust firm characteristics.13

5.4 Bivariate portfolio-level analysis

In this section, I control for the established equity return predictors using 10x10 dependent and

independent double sorts based on various firm characteristics and the MFD. For dependent bivari-

ate sorts, each month, I first sort stocks into decile portfolios based on firm characteristics (control

variables). Then, I further sort stocks by the MFD into decile portfolios within each control variable

decile. For each first-stage sorting (or control) variable, this bivariate portfolio analysis provides

13In Table 2, I have already controlled for the market, size, value, momentum, investment, and profitability factors
of Fama and French [2018] and Hou et al. [2015] as well as the mispricing and behavioral factors of Stambaugh
and Yuan [2017] and Daniel et al. [2020] constructed based on earnings surprise (post-earnings-announcement drift)
and a number of other well-known return predictors. As discussed in Section 5.1, the alpha spreads on MFD-sorted
portfolios remain negative and highly significant in both value-weighted and equal-weighted portfolios after controlling
for this large set of equity market factors.
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100 conditionally double-sorted portfolios. Portfolio 1 (10) is the combined portfolio of stocks with

the lowest (highest) MFD in each control variable decile. For bivariate independent sorts, each

month, all stocks are grouped into decile portfolios based on independent ascending sorts of both

a control variable and the MFD. The intersections of each of the decile portfolios are used to form

100 unconditionally double-sorted portfolios.

Table 7 presents the Fama and French [2018] six-factor alphas on the value-weighted bivariate

portfolios. For brevity, I do not report the alphas for all 100 (10x10) portfolios. Instead, I report the

abnormal returns on the value-weighted portfolios of MFD averaged across the 10 control variable

deciles to produce the MFD-sorted decile portfolios while accounting for the impact of control

variables. Panel A (Panel B) reports the six-factor alphas from the dependent (independent)

bivariate portfolios. The last row in Panels A and B of Table 7 shows that the cross-sectional

relation between the MFD and future returns remains economically large and highly significant

after controlling for a large set of well-known return predictors. The six-factor alpha spreads on

the value-weighted MFD-sorted portfolios are in the range of −0.62% per month (t-stat.=−4.14)

and −0.92% per month (t-stat.=−4.28) from dependent bivariate sorts and ranging from −0.57%

per month (t-stat.=−3.08) to −0.78% per month (t-stat.=−3.74) from independent bivariate sorts.

These results indicate that even after controlling for various firm characteristics and risk factors

in bivariate portfolios, there is a strong negative relation between the MFD and future equity

returns. In other words, the predictive power of MFD is not explained by other cross-sectional

return predictors, including the existing measures of investor disagreement.

Another notable point in Table 7 is that, even after controlling for these robust, most prominent

return predictors, the significant alpha spread on MFD-sorted portfolios remains to be driven by

underperformance of high-MFD stocks, but not due to outperformance of low-MFD stocks, as the

six-factor alphas on the high-MFD portfolio are negative, economically large and highly significant,

whereas the six-factor alphas on the low-MFD portfolio are statistically insignificant. This finding is

observed for all control variables without exception and provides further support for the mispricing-

based explanation of the disagreement premium.

5.5 Fama-MacBeth cross-sectional regressions

In this section, I conduct firm-level Fama-MacBeth regression analysis to test if the MFD predicts

the cross-section of future stock returns while controlling for other known predictors simultaneously.

Each month, I run a cross-sectional regression of stock returns in that month on the past MFD as
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well as a number of control variables, including the lagged size, book-to-market, momentum, gross

profitability, asset growth, earnings surprise, short-term return reversal, illiquidity, turnover ratio,

idiosyncratic volatility, and lottery demand. I also control for the dispersion in analysts’ earnings

forecasts and the dispersion in analysts’ long-term growth forecasts, as the predictive power of

MFD may be correlated with two exsiting measures of analysts’ disagreement. I also control for

the industry fixed effects following the 48-industry classification scheme of Fama and French [1997].

The stock-level cross-sectional regressions are run each month and the standard errors of the average

slope coefficients are corrected for heteroskedasticity and autocorrelation following Newey and West

[1987].

Table 8 reports the results of stock-level Fama-MacBeth regressions. I control for the industry

fixed effect using Fama-French 48-industry classifications in all columns, except column (3). In

column (1), I include the MFD as well as other well-known return predictors in the cross-sectional

regressions. Consistent with the portfolio results, I find a negative and significant relation between

the MFD and one-month-ahead returns controlling for a large number of predictors. The average

slope coefficient on the MFD is −1.45 with a t-statistic of −2.78. The spread in the average

standardized MFD between deciles 10 and 1 is approximately 0.30, and multiplying this spread

by the average slope of −1.45 yields an economically significant return difference of −0.44% per

month, controlling for all else. In most cases, the slope coefficients on the control variables are

consistent with prior literature; the short term reversal (STR), asset growth (AG), and MAX

are negatively correlated with the future return, and momentum (MOM), gross profitability, and

earnings surprise (SUE) are positively related to the next month’s return. In addition, the coefficient

on the dispersion in analysts’ earnings forecasts is negative but insignificant, indicating that the

MFD subsumes the cross-sectional predictive power of the dispersion in analysts’ earnings forecasts.

When I independently test the predictive power of the dispersion in analysts’ earnings forecast

measure, I find that its coefficient is negative and significant at the 5% level, consistent with earlier

studies. In column (2), I further control for the dispersion in analysts’ long-term growth forecasts.

The MFD retains its significant predictive power, although the magnitude of the average slope

coefficient somewhat reduces to −1.40, corresponding to the disagreement premium of −0.42% per

month.

In column (3), I include INDRETt+1, which is computed as the value-weighted Fama-French

48-industry portfolio returns, as a control variable in my main regression to account for the industry

effect. Specifically, I adjust the dependent variable by subtracting the firm’s value-weighted Fama-
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French 48-industry return INDRETt+1 from the firm’s current month return. Doing so allows

us to tease out the return predictive power from the MFD rather than the one-month industry

momentum effect (Moskowitz and Grinblatt [1999]). The coefficient of the MFD remains similar

after controlling for the industry return directly. In column (4), I further control for the common

characteristics that are shown to affect stock returns systematically. Specifically, I follow Daniel

et al. [1997] and compute the characteristics-adjusted returns as the difference between the firm’s

return and the corresponding DGTW benchmark portfolio returns. I replace the firm’s raw return

with this characteristics-adjusted return as the dependent variable and run the same set of monthly

cross-sectional regressions. Again, the magnitude of the slope coefficient on MFD becomes slightly

weaker, but it remains highly significant.

Overall, these results indicate that the MFD provides incrementally value-relevant information.

The predictive power of the MFD is distinct and robust to the inclusion of other well-known return

predictors and the existing measures of investor disagreement.

5.6 Robustness Check

My key variable of interest, the machine forecast disagreement (MFD), is defined as the cross-

sectional standard deviation of machines’ return forecasts scaled by the absolute value of the mean

machines’ return forecasts obtained from the 12 machine learning models described in Section 4.

In this section, I introduce two auxiliary measures of investor disagreement and investigate their

performance in predicting future equity returns.

Specifically, I propose an alternative measure of divergence of opinion as the ratio of the cross-

sectional standard deviation of machines’ return forecast errors to the absolute value of the mean

machines’ return forecasts, denoted by MFED. Given that Realized Return = Predicted Return

+ Forecast Error, the MFED is constructed based on the cross-sectional dispersion in forecast

errors obtained from the 12 machine learning models. Once I compute the MFED for each stock

and month in my sample, I form the long-short equity portfolios of stocks sorted by the MFED and

present the excess returns and alphas on the MFED-sorted portfolios in Table OA5 of the online

appendix. Similar to my original findings from the MFD (reported in Table 2), Table OA5 shows

an economically and statistically significant relation between the MFED and future stock returns.

Controlling for the robust risk and behavioral factors does not change the magnitude and statistical

significance of the return spreads on the MFED-sorted portfolios for most of the factor models. The

only exception is the alpha of the long-short portfolio under the mispricing factor model, where
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the alpha decreases from 0.55% (CAPM) to 0.43% (SY model) per month and the corresponding

t-statistic decreases from 2.64 to 1.91 for the value-weighted portfolio, suggesting that the return

predictability is largely driven by mispricing rather than compensation for risk.

As a further robustness check, I develop another measure of investor disagreement (or firm-

specific uncertainty) as the ratio of the cross-sectional difference between the maximum and min-

imum of machines’ return forecasts to the absolute value of the mean machines’ return forecasts.

This alternative measure, denoted by MAX–MIN, captures the largest spread in the cross-sectional

distribution of expected return forecasts obtained from the 12 machine learning models and can

be viewed as a proxy for firm-specific uncertainty. Since a larger spread in the cross-sectional dis-

tribution of return forecasts signals higher information uncertainty about the firm, stocks with a

higher MAX–MIN spread are anticipated to have lower future returns. To test this hypothesis, I

construct the long-short portfolios of stocks sorted by the MAX–MIN and report the excess returns

and alphas in Table OA6 of the online appendix. Similar to my earlier findings from the MFD

and MFED, Table OA6 presents a highly significant relation between the MAX–MIN and future

stock returns. Controlling for the established factor models does not change the significance of

the return spreads on the MAX–MIN sorted portfolios. Again, the only exception is the alpha of

the long-short portfolio under the mispricing factor model, where the alpha decreases from 0.49%

(CAPM) to 0.38% (SY model) per month and the corresponding t-statistic decreases from 2.31

to 1.78 for the value-weighted portfolio, confirming that the predictive power of the MAX–MIN

spread, proxying for information uncertainty, is mainly driven by mispricing.

6 Sources of return predictability

Having established that the predictive power of the MFD may be driven by slow dissemination

of disagreement-related information due to investors’ underreaction, I seek to understand the eco-

nomic underpinnings of my main finding based on investors’ sophistication, informational frictions,

investors’ limited attention, and limits to arbitrage.

6.1 Informational frictions

Market reactions to firm-specific uncertainty or information uncertainty about individual stocks can

generate important insights on how the market processes divergence of opinion that may influence

the information efficiency of the equity market. I conjecture that time-series and cross-sectional
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variations in firm-specific uncertainty, information uncertainty, and investor disagreement that gen-

erate low vs. high MFD are harder to interpret by average investors, compared to the direct and

well-defined information events studied in the literature. Thus, consistent with Hirshleifer et al.

[2013] who emphasize that investors would have more difficulty in processing information that is less

tangible, I conjecture that the elusive nature of the MFD thus makes investors face more severe in-

formational frictions. As a result, the stock market can underreact to my uncertainty/disagreement

proxy, and the informative signals provided by the MFD for stocks largely held by retail investors

are not incorporated into prices quickly. On the other hand, sophisticated institutional investors,

who are able to detect and process information generated by the MFD, can take advantage of mis-

pricing in these stocks so that the information produced by the MFD will be promptly incorporated

into stock prices. Since the information is integrated into the prices much faster in the presence

of informed investors, there is little room for predictability among stocks with high institutional

ownership. Thus, the slow diffusion of information and the resulting return predictability should

be more pronounced for stocks with low institutional ownership.

In this section, I investigate the differing levels of institutional ownership among stocks with

high and low MFD.14 I test two hypotheses. First, I investigate whether the level of institutional

ownership is lower for high-MFD stocks and are more likely to earn negative returns in the next

month. This would be true if institutional investors were better able to capture the persistence in

MFD and shied away from those stocks which have experienced recent negative returns. Second,

I test whether the magnitude of the negative relation between the MFD and future returns is

larger for those stocks in which retail investors are more active compared to those stocks in which

institutional investors are more active.

In Panel A of Table 9, I present the time-series averages of cross-sectional means for percentage

institutional ownership (INST) for equity deciles formed via a univariate sort based on the MFD.

The results show that equities with higher MFD are more likely to be held by individual investors.

The percentage institutional ownership is equal to 34% for decile 1. In contrast, for decile 10 which

includes the equities with the highest MFD, the percentage institutional ownership drops to 26%.

The difference in institutional holdings between the extreme MFD deciles is highly significant with

a t-statistic of 6.18.

14Institutional holdings data are obtained from Thompson-Reuters’ Institutional Holdings (13F) database. To
measure a stock’s institutional holdings (INST), I define month-t INST to be the fraction of total shares outstanding
that are owned by institutional investors as of the end of the last fiscal quarter during or before month t. Values of
INST are available for the period from January 1980 to December 2019.
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Next, I analyze the strength of the disagreement premium across institutional ownership port-

folios using a dependent double sort analysis. Specifically, I first sort stocks into quintile portfolios

every month based on the level of institutional ownership. Then, I divide each institutional own-

ership quintile into deciles based on the MFD. In Panel B of Table 9, I present the Fama-French

(2018) six-factor alpha for each of the 50 (5×10) resulting INST&MFD sorted portfolios as well as

the six-factor alpha spread between the extreme MFD deciles, and associated t-statistics. A notable

point in Table 9, Panel B, is that the magnitude of the abnormal return (six-factor alpha) to the

zero-cost portfolio that buys stocks with the highest MFD and sells stocks with the lowest MFD

increases monotonically in absolute value as one moves towards the stocks for which the level of

institutional holdings is lowest (INST1). For stocks in which institutional investors are most active

(INST5), the six-factor alpha to the zero-cost portfolio is negative but economically and statisti-

cally insignificant; −0.19% per month (t-stat.=−1.56), whereas the corresponding alpha spread on

MFD-sorted portfolios is much higher at −1.23% (t-stat.=−4.72) for stocks in which retail investors

are most active (INST1). The diff-and-diff analysis of the six-factor alpha spreads of the stocks

with high vs. low institutional holdings also generates an economically and statistically significant

difference. Specifically, the difference between the six-factor alphas of the zero-cost MFD-sorted

portfolios among the extreme institutional ownership quintiles (INST5 – INST1) is 1.04% with

a t-statistic of 3.27. Collectively, these results indicate that the disagreement premium is much

stronger for equities with high informational frictions or equities that are held by less informed,

retail investors.

6.2 Investors’ limited attention

Barber and Odean [2008] argue that individual investors can only process limited investment choices

due to limited time and resources they have. Hirshleifer et al. [2009] find that investors’ underreac-

tion to earning surprises and post-earnings-announcement drift are stronger for firms that announce

earnings on days that many other firms announce earnings due to investors’ limited attention. Co-

hen and Frazzini [2008] provide evidence that suppliers’ have delayed responses to the information

disclosure of their customers. Hirshleifer et al. [2013] emphasize that investors would have more

difficulty in processing information that is less tangible, so the elusive nature of the MFD makes the

investors’ attention constraints more likely to be binding. These constraints would be even more

binding for retail investors who are more active in high-MFD stocks, compared to institutional

investors. Moreover, as indicated in the model of Peng and Xiong [2006], an investor who optimizes
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the amount of attention would allocate more attention to systematic shocks and less to firm-specific

shocks. Thus, a case can be made for under- or delayed-reaction to firm-specific uncertainty based

on theories of investor attention.

Following the aforementioned articles, I argue that investors may pay limited attention to firm-

specific uncertainty or investor disagreement proxied by the MFD. Following earlier studies, I use

three proxies of investor attention; (i) institutional ownership, INST, (ii) analyst coverage, CVRG,

and (iii) absolute earnings surprise, abs(SUE). Institutional ownership and analyst coverage are

commonly used in the literature as proxies for investor attention.15 Bali et al. [2018] show that firms

with greater absolute earnings surprises are more likely to attract investor attention, increasing

investor awareness of firms’ specific characteristics.16 Therefore, firms with lower institutional

ownership, lower analyst coverage, or lower absolute SUE receive less attention from investors and

should exhibit more sluggish stock price reactions to the information contained in MFD and greater

predictability of stock returns.

I test the investor attention hypothesis by dividing my sample into subgroups based on an

investor attention proxy and investigate whether the predictive power of MFD is stronger (weaker)

for stocks that receive less (more) investor attention. Specifically, I first sort stocks into tercile

portfolios every month based on an attention proxy – INST, CVRG, or abs(SUE). Then, I divide

each attention tercile into deciles based on the MFD. I test whether the strength of the disagreement

premium exhibits a pattern across the attention terciles. The investor inattention theory predicts

that the return/alpha to the zero-cost portfolio that buys (sells) stocks with the highest (lowest)

MFD should be more negative for those stocks with low attention characteristics.

Table 10 reports the average return and alpha differences between the extreme MFD deciles in

each attention group. Consistent with the attention hypothesis, I find that the return and alpha

spreads on MFD-sorted portfolios are negative and larger in absolute magnitude, and statistically

more significant for stocks in low-attention terciles; low-INST, low-CVRG, and low-abs(SUE), com-

pared to the return and alpha spreads on MFD-sorted portfolios for stocks in high-attention terciles.

The diff-and-diff analysis of the return and alpha spreads of the stocks with high vs. low atten-

tion characteristics also generates an economically and statistically significant difference. Specifi-

15Analyst coverage data come from the Institutional Brokers’ Estimate System (I/B/E/S) database and cover the
period from 1976 to 2019. Analyst coverage (CVRG) is defined as the number of analysts following a firm in the
portfolio formation month.

16The standardized unexpected earnings (SUE) is defined as the actual earnings in the current quarter minus
earnings four quarters ago, scaled by stock price in the current quarter, following Livnat and Mendenhall [2006]. For
abs(SUE), I use the last non-missing SUE value that is released prior to the June of each year during the past 12
months.
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cally, the differences between the return and alphas of the zero-cost MFD-sorted portfolios among

the extreme attention terciles (high-INST–low-INST; high-CVRG–low-CVRG, high-abs(SUE)–low-

abs(SUE)) are economically and statistically significant. Overall, these results indicate that the

disagreement premium is stronger for stocks that receive less investor attention.

6.3 Limits to arbitrage

My results suggest that informational frictions and investors’ inattention contribute to the cross-

sectional relation between the MFD and future equity returns, but I do not fully understand what

sustains this return predictability. In this section, I further explore the role of limits-to-arbitrage.

If the predictive power of the MFD is driven by mispricing to some extent, then I should expect

the return predictability to be more pronounced for stocks with high arbitrage costs. In my next

test, I use three proxies of limits-to-arbitrage that are prevalent in the literature.

The prior literature singles out idiosyncratic risk as the primary arbitrage cost (e.g., Pontiff

[2006]). I rely on Ang et al. [2006] and measure the monthly IVOL as the standard deviation of

the daily residuals from the regression of daily excess stock returns on the three factors of Fama

and French [1993] over the past one month. Moreover, following Amihud [2002], I use the monthly

illiquidity measure as my second proxy, computed as the absolute daily return divided by daily

dollar trading volume, averaged in month t−1. Finally, I rely on the market capitalization (size) as

my third proxy, which is another widely used measure to capture costly arbitrage (e.g., Cohen and

Lou [2012]; Lee et al. [2019]). I test the limits-to-arbitrage hypothesis using bivariate portfolios.

Specifically, I first sort stocks into tercile portfolios every month based on a limits-to-arbitrage

proxy – IVOL, ILLIQ, or SIZE. Then, I divide each limits-to-arbitrage tercile into deciles based

on the MFD. I test whether the strength of the disagreement premium exhibits a pattern across

the arbitrage cost terciles. The limits-to-arbitrage hypothesis predicts that the return/alpha to the

zero-cost portfolio that buys (sells) stocks with the highest (lowest) MFD should be more negative

for those stocks with high arbitrage costs.

I conduct the dependent double sorting. Specifically, I first sort stocks into tercile portfo-

lios every month based on an arbitrage cost proxy – IVOL, ILLIQ, or SIZE. Then, I divide each

arbitrage cost tercile into deciles based on the MFD. Consistent with the limits-to-arbitrage hy-

pothesis, Table 11 shows that the return and alpha spreads on MFD-sorted portfolios are negative

and larger in absolute magnitude, and statistically more significant for stocks with high arbitrage

costs; high-IVOL, high-ILLIQ, and low-SIZE, compared to the return and alpha spreads on MFD-
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sorted portfolios for stocks with low arbitrage costs. The diff-and-diff analysis of the return and

alpha spreads of the stocks with high vs. low arbitrage costs also generates a highly significant

difference in the machines’ forecast disagreement premium. Specifically, the differences between the

return and alphas of the zero-cost MFD-sorted portfolios among the extreme arbitrage cost terciles

(high-IVOL–low-IVOL; high-ILLIQ–low-ILLIQ, high-SIZE–low-SIZE) are economically large and

statistically significant. Thus, I conclude that the slow diffusion of information into stock prices due

to limits-to-arbitrage provides a complementary explanation to the predictive power of the MFD.

7 Risk versus mispricing explanation

The results so far suggest that the established asset pricing models of risk do not explain the cross-

sectional variation in equity returns associated with the MFD. However, there is still the possibility

of a risk-based mechanism that leads to the return predictability. For example, the MFD can

predict the future change in risk, which would lead to a change in the firm’s expected return. Thus,

in this section, I conduct additional tests to explore whether alternative measures of risk could

plausibly explain my results.

7.1 Earnings prediction

If investors could not fully capture the impact of firm-specific uncertainty or investor disagreement

– proxied by the MFD – on firm’s profitability, they would be surprised by the earnings realizations

in the future. Thus, I investigate whether the MFD can predict the future earnings controlling for

the past earnings. I use standardized unexpected earnings (SUE), defined as actual earnings in

the current quarter minus earnings four quarters ago, scaled by stock price in the current quarter,

following Livnat and Mendenhall [2006], to proxy for earnings surprise. I conduct Fama-MacBeth

regressions of the SUE from quarter q+3 in year y+1 to quarter q+2 in year y+2 on the MFD and

other accounting variables at the end of year y as well as other priced-based controls in last month

prior to each quarter. I also control for the industry effects following the 48-industry classification

of Fama and French [1997]. Finally, I examine the future SUEs over longer time periods, while

keeping all independent variables the same. If the MFD contains information about future earnings,

I should expect the slope coefficient to be negative and significant.

Consistent with my expectation, the first column of Table 12 shows that the coefficient on the

MFD is significantly negative at −0.27 with a t-statistic of −3.05, after accounting for past SUE,
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control variables, and the industry effects. Moreover, consistent with Bernard and Thomas [1989],

the lagged SUE at quarter q is strongly positively correlated with the future SUE. In columns (2)

to (4), I repeat the Fama-MacBeth regressions with the same independent variables, but I replace

the dependent variable (SUEs) in subsequent quarters. The absolute values of the slope coefficients

on the MFD decrease monotonically from column (2) to column (4), and they become statistically

insignificant in columns (3) and (4), indicating that the earnings predictability of the MFD decays

quickly after two quarters. These results are consistent with the underreaction and mispricing

hypotheses that the MFD reflects slow diffusion of cash flow news into stock prices rather than a

change in the future discount rate or compensation for risk.

7.2 Portfolio returns during earnings vs. non-earnings announcement periods

To further differentiate the risk vs. mispricing explanations, I examine stock price reactions around

earnings announcements. If the return predictability were explained by underlying risk, I would

expect the returns to be evenly affected in the subsequent periods. In contrast, if the effect is

consistent with mispricing, then the returns must be disproportionately affected around earnings

announcements, meaning that the long-short portfolio returns and alphas around earnings an-

nouncements should be higher than those around non-earnings announcement periods, if investors

are surprised by the good or bad news during those periods.

I test these two distinct hypotheses by examining the long-short portfolio returns and alphas

during the periods with and without earnings announcements, defined as in Engelberg et al. [2018].

Specifically, I divide the entire sample period into months with and without earnings announce-

ments, and report the value-weighted average return and alpha spreads on the MFD-sorted port-

folios for these two different periods.

Table 13 presents the results. In earnings announcement periods, the long-short value-weighted

MFD-sorted portfolio generates an average return and Fama and French [2018] six-factor alpha

of 0.86% and 1.03% per month with the respective t-statistics of 3.68 and 3.60. In non-earnings

announcement periods, the same long-short portfolio produces much smaller average return and

six-factor alpha; 0.32% per month (t-stat.=2.01) and 0.40% (t-stat.=1.73), respectively. The long-

short excess returns (alphas) on MFD-sorted portfolios in earnings announcement periods are 2.69

(2.58) times higher than the long-short excess returns (alphas) in non-earnings announcement peri-

ods. These results are consistent with the findings of Engelberg et al. [2018] that the equity market

anomaly returns on average are three times higher during the periods of earnings announcements.
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Thus, the evidence supports the mispricing argument that investors do not fully incorporate the

MFD-driven return predictability information into their earnings forecasts and are therefore sur-

prised when earnings are realized.

7.3 Testing potential risk-based explanations

The results have so far shown that the standard factor models or traditional measures of risk

do not explain the cross-sectional variation in stock returns associated with the machine forecast

disagreement. In this section, I provide comprehensive evidence from testing alternative risk-based

explanations. Specifically, I rely on the established rational asset pricing models and investigate

whether these models’ implied measures of risk can be the driving force of the MFD-return relation.

I first test whether the CAPM explains the disagreement premium. Specifically, I report total

volatility, idiosyncratic volatility, and market beta for each MFD-sorted decile portfolio. The CAPM

implied measures of market beta, total volatility, and idiosyncratic volatility are estimated for each

month using the past 60-month individual stock returns, following Fama and French [1992]. Table

13 shows that the CAPM does not explain the disagreement premium as the low-MFD stocks with

high average returns have lower total volatility, lower idiosyncratic volatility, and lower market beta

than the high-MFD stocks with low average returns.

Next, I investigate if the MFD effect can be explained by the intertemporal CAPM (ICAPM)

of Merton (1973) and/or the consumption CAPM (CCAPM) of Breeden [1979]. Following Ang

et al. [2006] and Campbell et al. [2018], I use the change in VIX – S&P500 index option implied

volatility – as the second factor of the two-factor ICAPM model.17 Specifically, I estimate the VIX

beta for each stock and each month by running the time-series regressions of excess stock returns

on the excess market returns and the change in VIX in the past 60 months. To test for the CCAPM

explanation, I compute the consumption beta for each stock and each month by regressing the excess

stock returns on the consumption growth rate in the past 60 months.18 I convert the quarterly

consumption data to monthly frequency using linear and cubic spline interpolation methods and

the consumption beta estimates turn out to be similar from both methods.19 Results in Table 14

17Campbell et al. [2018] extend Merton’s original model by proposing a two-factor ICAPM with stochastic volatility
in which an unexpected increase in future market volatility represents deterioration in the investment opportunity
set.

18The central implication of the CCAPM is that the expected return on an asset is related to “consumption risk,”
that is, how much uncertainty in consumption would come from holding the asset. Assets that lead to a large amount
of uncertainty offer large expected returns, as investors want to be compensated for bearing consumption risk. Thus,
the expected excess return on a risky asset is proportional to the covariance of its return and consumption in the
period of the return.

19The quarterly consumption data (CAY) are obtained from Martin Lettau’s online data library:
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show that neither the ICAPM nor the CCAPM explains the MFD effect. Specifically, the low-MFD

stocks tend to have a higher VIX beta than the high-MFD stocks, implying lower future return

for the low-MFD stocks in the ICAPM framework. Also, as presented in Table 14, the VIX beta

difference between the high-MFD and low-MFD groups is statistically insignificant. In addition, the

low-MFD stocks have a lower consumption beta than the high-MFD stocks, rejecting the CCAPM

explanation for the disagreement premium.

Finally, I investigate the magnitude of the factor exposures to see if the MFD-driven return

spread is negatively loaded on these factors. Specifically, I estimate stock exposure to each factor

(ex-ante factor beta) for each month by regressing the excess stock returns on each of these well-

established factors in the past 60 months. Generally, the stocks in the lowest MFD decile have lower

factor exposures than those in the highest MFD decile. The only exception is the mispricing factor of

Stambaugh and Yuan [2017]; the difference between the high-MFD and low-MFD stock exposures

to the performance (PERF) factor of Stambaugh and Yuan [2017] is negative and statistically

significant, which provides further supporting evidence for the mispricing explanation. Overall,

these results indicate that the predictive power of the MFD is not explained by alternative measures

of risk.

8 Conclusion

This paper introduces a novel measure of divergence of opinion among investors about stock value

based on the dispersion in machines’ expected return forecasts (MFD), which is free from behavioral

biases and conflicts of interest that can be observed in the existing measures of disagreement. I

document a significantly negative cross-sectional relation between this newly proposed, objective

measure of uncertainty (or investor disagreement) and future stock returns. In particular, the value-

weighted arbitrage portfolio that takes a short position in 10% of the stocks with the highest MFD

and takes a long position in 10% of the stocks with the lowest MFD yields the one-month-ahead

abnormal returns (alphas) of 0.55-0.72% per month, estimated with established factor models. I also

examine its long-term predictive power and find that the negative relation between the MFD and

future equity returns is not just a one-month affair. The MFD predicts cross-sectional variation in

equity returns six months into the future. Finally, I find corroborating evidence on the significance

of MFD from bivariate portfolios and multivariate Fama–MacBeth regressions when I control for a

https://sites.google.com/view/martinlettau/data?authuser=0.
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large number of firm characteristics and risk factors.

I investigate the source of the significant alpha spread between the high-MFD and low-MFD

portfolios and find that the machine forecast disagreement premium is driven by underperformance

of high-MFD stocks, but not due to outperformance of low-MFD stocks, as the alphas on high-

MFD stocks are negative, economically large and highly significant, whereas the alphas on low-MFD

stocks are economically small and statistically insignificant. I also show that the high-MFD stocks

are subject to significant overpricing, and the negative alpha spread on MFD-sorted portfolios is

much stronger for overpriced stocks, compared to underpriced and fairly priced stocks. Thus, my

findings support the mispricing explanation of the disagreement premium, consistent with Miller

[1977]. I conduct comprehensive analyses to differentiate the risk vs. mispricing explanations. First,

I examine the market reactions around earnings announcements and find that the long-short average

returns/alphas on MFD-sorted portfolios in earnings announcement periods are about three times

higher than the long-short average returns/alphas in non-earnings announcement periods. Second,

the stocks in the lowest MFD decile portfolio have lower average beta, total and idiosyncratic

volatility, and their exposures to the established risk factors are lower than those in the highest

MFD decile portfolio. These results suggest that the return predictability is driven by mispricing

rather than compensation for risk.

To provide a better understanding of the economic mechanisms behind the return predictability,

I test if the predictive power of the MFD is explained by investors’ sophistication, informational

frictions, investors’ limited attention, and/or limits to arbitrage. I find that institutional (individ-

ual) investors are less (more) likely to be active in equities with high MFD and the disagreement

premium is more pronounced for equities with high ownership of retail investors. I also show that

the disagreement premium is stronger for stocks that are more likely to be held by retail investors

and that receive less investor attention. Another potential explanation is limited arbitrage since the

negative relation between the MFD and future returns is found to be most pronounced for stocks

with high arbitrage costs. Thus, I conclude that the MFD-driven return predictability is likely due

to informational frictions, investors’ limited attention, and limits to arbitrage.
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Figure 1: Aggregate MFD Index

This figure presents the monthly time-series plot of the aggregate MFD indices. The blue line depicts the
value-weighted average of the stock-level MFD measures. The red line depicts the equal-weighted average of
the stock-level MFD measures. Both MFD indices are standardized to have a zero mean and unit standard
deviation. The vertical bars correspond to NBER-dated recessions. The sample period is from July 1976 to
December 2019.
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Table 1: Descriptive Statistics

Panel A reports the summary statistics for the cross-sectional variables. The sample consists of all
common stocks (share codes equal to 10 or 11) that are listed on NYSE, Amex, and Nasdaq. Financial firms
(with one-digit SIC = 6), utility firms (with two-digit SIC = 49), and stocks trading below $5/share are
excluded from the analysis. RETt+1 is the one-month-ahead return of individual stocks. MFD is defined as
the cross-sectional standard deviation of return forecasts scaled by the absolute value of the cross-sectional
mean of return forecasts. SIZE is the firm’s market capitalization computed as the logarithm of the market
value of the firm’s outstanding equity at the end of month t−1. BM is the logarithm of the firm’s book value
of equity divided by its market capitalization, where the BM ratio is computed, following Fama and French
(2008). Firms with negative book values are excluded from the analysis. Asset Growth (AG) is a percentage
of total asset growth between two consecutive fiscal years, following Cooper et al. (2008). Gross Profitability
(GP) is the firm’s gross profitability calculated as revenue minus cost of goods sold scaled by total assets,
following Novy-Marx (2013). MOM is the stock’s cumulative return from the start of month t − 12 to
the end of month t − 2, following Jegadeesh and Titman (1993). Short-term reversal (STR) is the stock’s
one-month lagged return, following Jegadeesh (1990). ILLIQ is the monthly illiquidity measure computed
using daily data in month t − 1, following Amihud (2002). TURN is the monthly turnover computed as
the number of trading shares divided by the total number of shares outstanding in month t − 1. SUE is
the standardized unexpected earnings defined as actual earnings in the current quarter minus earnings 4
quarters ago, scaled by stock price in the current quarter, following Livnat and Mendenhall (2006). IVOL is
the idiosyncratic volatility over month t− 1, following Ang et al. (2006). MAX is average of the five highest
daily returns of each stock in month t − 1, following Bali et al. (2011). DAE is the dispersion in analysts’
earnings forecasts, following Diether et al. (2002). DALG is the dispersion in analysts’ long-term growth
forecasts, following Anderson et al. (2005). All variables are winsorized at the 1% level for both tails to
mitigate the effect of outliers. The mean, standard deviation (SD), minimum, median, and maximum of each
variable are shown in Panel A. The sample period is from July 1976 to December 2019. Panel B presents
the panel Pearson (Spearman) correlations of the variables below (above) diagonal. Panel C presents the
correlations between the aggregate MFD indices and the established measures of uncertainty. The value-
weighted (equal-weighted) MFD index is the value-weighted (equal-weighted) average of the stock-level MFD
measures. The established measures of uncertainty include Jurado, Ludvigson, and Ng (2015) economic and
financial uncertainty measures, Baker, Bloom, and Davis (2016) economic policy uncertainty measures, and
the VXO index. The MFD indices and Jurado, Ludvigson, and Ng (2015) economic and financial uncertainty
indices start from July 1976. The Baker, Bloom, and Davis (2016) economic policy uncertainty index starts
from January 1985. The VXO index starts from January 1986.

Panel A: Summary statistics

Mean Stdev Min Median Max

RETt+1 0.01 0.14 -0.41 0.00 1.58

MFD 2.49 1.28 0.07 2.04 5.71

SIZE 4.90 1.91 0.62 4.78 10.44

BM -0.61 0.87 -3.40 -0.53 1.43

AG 1.32 0.88 0.87 1.25 5.68

GP 0.38 0.29 -0.54 0.36 1.27

MOM 0.13 0.51 -0.82 0.05 2.61

STR 0.01 0.14 -0.40 0.00 0.57

ILLIQ 0.22 0.43 0.00 0.05 23.83

TURN 1.19 1.28 0.02 0.79 8.33

SUE 0.10 1.90 -54.21 0.09 34.63

IVOL 0.04 0.02 0.02 0.04 0.20

MAX 0.03 0.02 0.00 0.03 0.19

DAE 2.22 0.83 0.10 1.98 4.31

DALG 1.12 0.42 0.15 0.92 3.75
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Panel B: Pearson (Spearman) correlations below (above) the diagonal

RETt+1 MFD SIZE BM AG GP MOM STR ILLIQ TURN SUE IVOL MAX DAE DALG

RETt+1 -0.006 -0.003 0.022 -0.026 0.018 0.024 -0.005 0.005 -0.014 0.051 -0.029 -0.042 -0.102 -0.030

MFD -0.005 -0.038 0.066 -0.018 0.132 -0.011 0.005 0.037 0.041 0.019 0.021 -0.021 0.033 0.020

SIZE -0.003 -0.045 -0.279 0.046 0.021 0.194 0.071 -0.408 0.261 0.033 -0.330 -0.164 0.024 0.017

BM 0.023 0.065 -0.260 -0.175 -0.129 -0.022 0.017 0.112 -0.227 -0.021 0.007 0.080 -0.068 -0.012

AG -0.030 -0.015 0.046 -0.259 -0.113 -0.015 -0.021 -0.059 0.106 -0.037 0.061 0.041 -0.127 -0.005

GP 0.024 0.133 0.013 -0.100 -0.088 0.055 0.023 0.017 -0.024 -0.036 -0.086 -0.064 -0.035 -0.093

MOM 0.030 -0.013 0.200 -0.018 -0.011 0.092 0.023 -0.141 0.128 0.078 -0.130 -0.025 -0.006 -0.046

STR -0.006 0.006 0.050 0.019 -0.021 0.025 0.024 -0.066 0.052 0.059 -0.083 0.154 -0.004 -0.016

ILLIQ 0.003 0.040 -0.344 0.165 -0.072 0.017 -0.107 -0.050 -0.153 -0.017 0.361 0.465 0.001 0.069

TURN -0.010 0.035 0.157 -0.130 0.156 -0.026 0.137 0.052 -0.171 -0.007 0.295 0.189 -0.039 -0.040

SUE 0.063 0.015 0.035 -0.018 -0.032 -0.026 0.075 0.061 -0.010 -0.013 -0.029 -0.043 -0.014 -0.010

IVOL -0.028 0.019 -0.406 0.004 0.037 -0.088 -0.173 -0.091 0.437 0.225 -0.033 0.692 0.055 0.009

MAX -0.038 -0.024 -0.168 0.068 0.043 -0.073 -0.024 0.144 0.347 0.226 -0.039 0.743 0.060 0.013

DAE -0.111 0.032 0.031 -0.059 -0.093 -0.042 -0.009 -0.004 0.001 -0.048 -0.015 0.041 0.067 0.034

DALG -0.026 0.021 0.017 -0.015 -0.004 -0.067 -0.036 -0.018 0.080 -0.040 -0.016 0.009 0.010 0.041

Panel C: Correlations between the MFD index and existing measures of uncertainty

Correlations
Value-weighted Economic Financial Economic policy VXO

MFD index uncertainty uncertainty uncertainty index

Equal-weighted MFD index 0.950 0.520 0.526 0.509 0.512

Value-weighted MFD index 0.344 0.482 0.500 0.507

Economic uncertainty 0.524 0.220 0.551

Financial uncertainty 0.360 0.813

Economic policy uncertainty 0.344
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Table 2: Univariate Portfolio Analysis

Panel A reports the average monthly excess returns and alphas on the value-weighted portfolios of stocks
sorted by the MFD. Panel B reports the average monthly excess returns and alphas on the equal-weighted
portfolios of stocks sorted by the MFD. For each month t from July 1976 to December 2019, individual
stocks are sorted into decile portfolios by the MFD in month t − 1, and are held for the next one month.
P1 is the portfolio of stocks with the lowest MFD and P10 is the portfolio of stocks with the highest MFD.
L/S is a zero-cost portfolio that buys stocks in decile 10 (highest MFD) and sells stocks in decile 1 (lowest
MFD). All returns and alphas are expressed in percentage. Excess return is the raw return of the portfolio
over the risk-free rate. Alpha is the intercept from a time-series regression of monthly excess returns on
the factors of alternative models: the CAPM, Fama and French [2018] six-factor model (FF6), Stambaugh
and Yuan [2017] mispricing factor model (SY), Hou et al. [2015] q-factor model (HXZ), Hou et al. [2015]
q4-factor model (HXZ), and Daniel et al. [2020] behavioral factor model (DHS). Newey and West [1987]
adjusted t-statistics are given in parentheses. Coefficients marked with *, **, and *** are significant at the
10%, 5%, and 1% level, respectively. The sample period is from July 1976 to December 2019.

Panel A: Value-weighted MFD-sorted decile portfolios

Rank Excess Return CAPM FF6 SY HXZ DHS

P1 0.72*** 0.19 0.20 0.01 0.18 0.15
(2.90) (0.92) (0.87) (0.38) (0.91) (0.95)

P2 0.61** 0.17 0.17 -0.02 0.16 0.13
(2.26) (0.55) (0.51) (-0.08) (0.89) (0.49)

P3 0.55** 0.04 0.03 -0.16 -0.03 -0.11
(2.20) (0.84) (0.23) (-0.06) (-0.36) (-0.33)

P4 0.57** 0.16 0.10 -0.07 0.13 -0.03
(2.22) (0.42) (0.51) (-0.07) (0.42) (-0.36)

P5 0.45** -0.06 -0.12 -0.16 -0.18 -0.34
(2.16) (-1.07) (-0.33) (-0.86) (-0.21) (-0.97)

P6 0.43 -0.11 -0.13 -0.20 -0.36 -0.38*
(1.35) (-1.13) (-0.60) (-1.00) (-0.51) (-1.89)

P7 0.35 -0.43* -0.37* -0.42 -0.49** -0.49**
(0.59) (-1.93) (-1.73) (-1.45) (-2.03) (-2.17)

P8 0.36 -0.29* -0.32 -0.25 -0.47** -0.39*
(0.89) (-1.81) (-0.78) (-1.01) (-1.99) (-1.93)

P9 0.33 -0.50** -0.45* -0.44** -0.49** -0.51***
(0.33) (-2.11) (-1.90) (-2.06) (-2.20) (-2.81)

P10 0.27 -0.50*** -0.52* -0.54** -0.53*** -0.52***
(0.05) (-2.63) (-1.92) (-2.44) (-2.65) (-2.82)

L/S -0.45*** -0.69*** -0.72*** -0.55** -0.71*** -0.67***
(-2.94) (-3.36) (-3.45) (-2.54) (-2.91) (-2.83)
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Panel B: Equal-weighted MFD-sorted decile portfolios

Rank Excess Return CAPM FF6 SY HXZ DHS

P1 0.84*** 0.26 0.33 -0.01 0.21 0.16

(3.28) (0.99) (0.37) (-0.58) (0.45) (0.99)

P2 0.78*** 0.12 0.17 -0.34 0.08 -0.04

(2.78) (0.36) (0.04) (-0.83) (0.41) (-1.37)

P3 0.58** 0.08 0.12 -0.37 0.04 -0.21*

(2.09) (0.33) (-0.39) (-1.26) (-0.05) (-1.76)

P4 0.58* 0.05 -0.01 -0.37 -0.10 -0.30*

(1.85) (0.10) (-0.82) (-1.50) (-0.81) (-1.80)

P5 0.56* -0.10 -0.06 -0.46* -0.11* -0.38*

(1.73) (-0.04) (-1.28) (-1.93) (-1.89) (-1.84)

P6 0.51 -0.22 -0.14 -0.48*** -0.14** -0.38**

(1.63) (-0.30) (-1.35) (-2.64) (-2.17) (-2.04)

P7 0.41 -0.24 -0.31 -0.54*** -0.38** -0.40**

(1.61) (-1.45) (-1.38) (-2.67) (-2.49) (-2.16)

P8 0.38 -0.28 -0.38* -0.55*** -0.56*** -0.47***

(1.60) (-1.52) (-1.94) (-2.84) (-2.87) (-2.65)

P9 0.32 -0.43** -0.44** -0.57*** -0.61*** -0.54***

(1.54) (-2.14) (-2.53) (-3.15) (-2.96) (-3.88)

P10 0.24 -0.59*** -0.73*** -0.67*** -0.72*** -0.63***

(1.28) (-2.72) (-3.60) (-3.47) (-3.09) (-3.98)

L/S -0.60*** -0.86*** -1.06*** -0.66*** -0.93*** -0.79***

(-4.04) (-4.15) (-4.41) (-3.58) (-4.36) (-4.14)
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Table 3: Transition Matrix

This table presents transition probabilities for MFD at a lag of 12 months from July 1976 to December
2019. For each month t, all stocks are sorted into deciles based on an ascending ordering of the MFD.
The procedure is repeated in month t+12. P1 is the portfolio of stocks with the lowest MFD and P10 is
the portfolio of stocks with the highest MFD. For each MFD decile in month t, the percentage of stocks
that fall into each of the month t+ 12 MFD decile is calculated. Table presents the time-series averages of
these transition probabilities. Each row corresponds to a different month t MFD portfolio and each column
corresponds to a different month t+ 12 MFD portfolio.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 63 16 10 6 2 2 1 0 0 0
P2 17 48 15 8 4 3 2 1 1 1
P3 7 18 40 14 9 5 3 2 1 1
P4 5 7 15 37 16 9 6 2 2 1
P5 4 4 9 16 35 15 8 3 3 3
P6 2 2 5 8 13 38 14 8 6 4
P7 2 2 2 4 9 14 40 14 8 5
P8 0 1 2 3 6 6 14 52 10 6
P9 0 1 1 2 3 5 9 10 56 13
P10 0 1 1 2 3 3 3 8 13 66
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Table 4: Long-Term Predictive Power

This table presents the long-term predictive power of the MFD. P1 is the value-weighted portfolio of
stocks with the lowest MFD and P10 is the value-weighted portfolio of stocks with the highest MFD. L/S
is a zero-cost value-weighted portfolio that buys stocks in decile 10 (highest MFD) and sells stocks in decile
1 (lowest MFD). The table reports Fama and French [2018] six-factor alphas for each of the MFD-sorted
decile portfolios from two to 12 months after portfolio formation. The last column shows the differences of
monthly Fama and French [2018] six-factor alphas between deciles 1 and 10. Newey and West [1987] adjusted
t-statistics are presented in parentheses. Coefficients marked with *, **, and *** are significant at the 10%,
5%, and 1% level, respectively.

t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9 t + 10 t + 11 t + 12

P1 0.11 0.07 0.04 0.05 -0.01 -0.07 -0.15 -0.13 -0.10 -0.11 -0.15
(0.71) (0.44) (0.34) (0.52) (-0.53) (-0.48) (-0.36) (-0.16) (-0.14) (-0.17) (-0.07)

P2 -0.05 0.01 0.00 0.04 -0.02 -0.08 -0.18 -0.17 -0.17 -0.18 -0.17
(-0.61) ( 0.29) (0.16) (0.05) (-0.39) (-0.23) (-0.04) (-0.15) (-0.12) (-0.07) (-0.04)

P3 -0.14 -0.03 -0.06 -0.13 -0.19 -0.13 -0.20 -0.19 -0.20 -0.18 -0.18
(-0.26) (-0.47) (-0.65) (-0.40) (-0.16) (-0.29) (-0.46) (-0.04) (-0.03) (-0.04) (-0.18)

P4 -0.12 -0.01 -0.05 -0.08 -0.18 -0.12 -0.19 -0.18 -0.18 -0.18 -0.17
(-0.31) (-0.05) (-0.42) (-0.03) (-0.26) (-0.06) (-0.24) (-0.10) (-0.07) (-0.03) (-0.14)

P5 -0.15 -0.16 -0.27 -0.14 -0.23 -0.13 -0.25 -0.21 -0.20 -0.21 -0.18
(-1.10) (-1.35) (-0.84) (-0.51) (-0.72) (-0.54) (-0.46) (-0.12) (-0.02) (-0.22) (-0.20)

P6 -0.16 -0.20 -0.27 -0.16 -0.25 -0.13 -0.30 -0.21 -0.21 -0.23 -0.18
(-1.17) (-1.39) (-0.90) (-0.54) (-0.89) (-0.78) (-0.47) (-0.31) (-0.03) (-0.27) (-0.23)

P7 -0.39** -0.36* -0.35* -0.29 -0.29 -0.17 -0.33 -0.27 -0.25 -0.27 -0.20
(-2.30) (-1.92) (-1.69) (-1.14) (-1.26) (-1.08) (-0.76) (-0.49) (-0.15) (-0.41) (-0.25)

P8 -0.25** -0.34* -0.27 -0.27 -0.28 -0.15 -0.32 -0.25 -0.22 -0.26 -0.20
(-2.30) (-1.82) (-1.36) (-0.96) (-1.24) (-0.80) (-0.67) (-0.48) (-0.09) (-0.30) (-0.23)

P9 -0.41** -0.39* -0.36* -0.40 -0.33 -0.20 -0.37 -0.30 -0.27 -0.27 -0.21
(-2.41) (-1.95) (-1.80) (-1.61) (-1.26) (-1.24) (-0.87) (-0.54) (-0.22) (-0.54) (-0.25)

P10 -0.45** -0.44** -0.43** -0.42* -0.33 -0.35 -0.40 -0.32 -0.28 -0.27 -0.23
(-2.41) (-2.04) (-2.02) (-1.75) (-1.53) (-1.36) (-1.19) (-0.83) (-0.60) (-0.57) (-0.27)

L/S -0.56*** -0.51** -0.47** -0.47* -0.32* -0.28 -0.25 -0.19 -0.18 -0.16 -0.08
(-2.83) (-2.29) (-2.08) (-1.94) (-1.87) (-1.58) (-1.25) (-1.03) (-0.91) (-0.89) (-0.52)
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Table 5: Testing Mispricing Explanation

Panel A reports the average mispricing (MISP) score of the MFD-sorted univariate decile portfolios.
High (low) MISP indicates a higher degree of overvaluation (undervaluation). Panel B presents the Fama
and French [2018] six-factor alphas on the 5x10 bivariate portfolios of stocks independently sorted into
quintile portfolios by MISP and decile portfolios by MFD. Panel B also reports the differences of monthly
six-factor alphas on MFD-sorted portfolios within each MISP quintile. The last four rows present the
differences between the six-factor alphas of the zero-cost MFD-sorted portfolios for MISP5 vs. the other
MISP quintiles. Newey and West [1987] adjusted t-statistics are given in parentheses. The sample period is
from July 1976 to December 2019.

Panel A: Average mispricing score of MFD-sorted decile portfolios

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P10-P1 t-stat

MISP 48.63 49.11 49.25 49.03 49.09 49.49 49.37 49.29 49.54 49.57 0.94 3.50

Panel B: Six-factor alphas on MISP&MFD-sorted portfolios

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P10-P1 t-stat

MISP1 0.20 0.17 0.03 0.10 -0.11 -0.13 -0.35 -0.32 -0.46 -0.55 -0.75 -3.07
MISP2 0.10 0.08 0.01 0.05 -0.06 -0.06 -0.17 -0.15 -0.22 -0.27 -0.37 -1.76
MISP3 0.13 0.11 0.02 0.07 -0.08 -0.09 -0.27 -0.21 -0.31 -0.35 -0.48 -2.29
MISP4 0.18 0.15 0.03 0.09 -0.11 -0.12 -0.34 -0.29 -0.41 -0.48 -0.67 -3.26
MISP5 0.36 0.31 0.05 0.18 -0.22 -0.24 -0.66 -0.57 -0.79 -0.94 -1.30 -4.89

MISP5 – MISP1 0.15 0.14 0.02 0.08 -0.11 -0.11 -0.31 -0.26 -0.33 -0.40 -0.55 -1.92
MISP5 – MISP2 0.26 0.23 0.04 0.13 -0.16 -0.18 -0.50 -0.43 -0.57 -0.67 -0.93 -3.29
MISP5 – MISP3 0.22 0.20 0.03 0.11 -0.14 -0.14 -0.39 -0.36 -0.48 -0.59 -0.82 -2.73
MISP5 – MISP4 0.17 0.16 0.03 0.09 -0.11 -0.12 -0.33 -0.29 -0.38 -0.46 -0.63 -1.71
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Table 6: Average Stock Characteristics of MFD-sorted Portfolios

This table presents the average stock characteristics of the univariate decile portfolios formed based on
the MFD. P1 is the portfolio of stocks with the lowest MFD and P10 is the portfolio of stocks with the
highest MFD. Table reports the time-series averages of the monthly cross-sectional medians for MFD and
various firm-specific characteristics for each MFD-sorted portfolio. The last two columns show the differences
between P1 and P10 and the associated Newey and West [1987] adjusted t-statistics. The MFD and other
firm-specific characteristics are defined in Table 1. The sample period is from July 1976 to December 2019.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P10-P1 t-stat

MFD 2.37 2.39 2.47 2.50 2.53 2.56 2.60 2.62 2.63 2.71 0.34 247.02
SIZE 4.68 4.41 4.28 4.89 4.74 4.36 4.42 4.32 4.04 4.24 -0.44 -13.13
BM -0.67 -0.78 -0.54 -0.52 -0.57 -0.64 -0.68 -0.55 -0.55 -0.47 0.20 12.72
AG 1.15 1.42 1.20 1.24 1.23 1.35 1.57 1.41 1.37 1.53 0.38 5.38
GP 0.46 0.38 0.37 0.42 0.42 0.39 0.38 0.39 0.33 0.35 -0.12 -62.70
MOM 0.14 0.14 0.15 0.13 0.12 0.13 0.12 0.11 0.12 0.12 -0.02 -5.94
STR -0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 5.41
ILLIQ 0.13 0.22 0.15 0.18 0.20 0.21 0.26 0.29 0.28 0.24 0.11 5.34
TURN 1.00 1.01 1.10 1.16 1.22 1.19 1.16 1.17 1.20 1.23 0.23 17.38
SUE 0.15 0.12 0.09 0.09 0.06 0.06 0.03 0.03 0.00 -0.03 -0.18 -9.42
IVOL 0.01 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 13.27
MAX 0.01 0.02 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.03 8.30
DAE 2.21 2.16 2.23 2.25 2.26 2.23 2.27 2.22 2.27 2.28 0.07 10.27
DALG 1.09 1.08 1.12 1.10 1.09 1.12 1.12 1.12 1.14 1.13 0.04 9.76
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Table 7: Bivariate Portfolio Analysis

This table presents results from the value-weighted bivariate portfolios based on dependent and indepen-
dent double sorts of various firm-specific characteristics and MFD. Panel A reports results from dependent
double sorts. First, decile portfolios are formed every month based on a firm-specific characteristic. Next,
additional decile portfolios are formed based on MFD within each firm-specific characteristic decile. Panel
B reports results from independent double sorts. All stocks are grouped into decile portfolios based on
independent ascending sorts of a firm-specific attribute and MFD each month. The intersections of each of
the decile groups are used to form the bivariate portfolios. P1 is the portfolio of stocks with the lowest MFD
averaged across each firm-specific characteristic decile. P10 is the portfolio of stocks with the highest MFD
averaged across each firm-specific characteristic decile. The table reports one-month-ahead six-factor alphas
associated with each MFD decile. L/S shows the differences of monthly alphas between MFD deciles 1 and
10 after controlling for each firm-specific characteristic. Alphas are calculated after adjusting for the market,
size, value, investment, profitability, and momentum factors of Fama and French [2018]. Newey and West
[1987] adjusted t-statistics are given in parentheses. Coefficients marked with *, **, and *** are significant
at the 10%, 5%, and 1% level, respectively. The sample period is from July 1976 to December 2019.

Panel A: Dependent bivariate sorts

SIZE BM AG GP MOM STR ILLIQ TURN SUE IVOL MAX DAE DALG

P1 0.00 0.18 0.17 0.11 0.28 0.20 0.20 0.04 0.17 0.30 0.24 0.17 0.20

(0.61) (0.60) (0.82) (0.49) (0.34) (0.19) (0.65) (0.52) (0.31) (0.82) (0.84) (0.62) (0.56)

P2 0.09 -0.15 0.06 0.26 -0.07 0.18 0.13 0.29 0.18 0.08 -0.03 0.10 0.12

(0.88) (-0.47) (0.08) (0.98) (-0.59) (0.04) (0.38) (0.61) (0.85) (0.03) (-0.40) (0.10) (0.56)

P3 -0.01 -0.20 -0.18 0.09 -0.28** 0.03 -0.15 0.04 0.16 -0.34 0.05 -0.07 -0.52

(-0.44) (-0.97) (-0.90) (0.27) (-2.25) (0.76) (-1.05) (1.33) (0.09) (-0.58) (0.41) (-1.33) (-0.53)

P4 -0.04 -0.22 -0.20 0.03 -0.33** -0.07* -0.26 0.03 0.16 -0.44* -0.12 -0.13 -0.56

(-0.29) (-1.21) (-1.21) (0.00) (-2.57) (-1.85) (-1.06) (1.44) (0.87) (-1.69) (-0.37) (-1.48) (-1.14)

P5 -0.17 -0.19 -0.15 -0.11 -0.09 0.12 0.04 -0.32 0.09 -0.11 -0.13 0.08 0.02

(-0.56) (-0.12) (-0.18) (-0.25) (-0.70) (0.22) (0.00) (-1.63) (0.93) (-0.41) (-1.00) (0.80) (0.25)

P6 -0.26 -0.28 -0.22 -0.16 -0.37*** -0.12** -0.09 -0.33** 0.03 -0.13 -0.15* 0.02 -0.50

(-1.20) (-1.28) (-1.37) (-0.77) (-2.73) (-2.00) (-0.70) (-2.27) (0.95) (-0.58) (-1.80) (-0.89) (-0.22)

P7 -0.42 -0.30** -0.25** -0.19 -0.42*** -0.60** -0.39* -0.39** -0.24 -0.46** -0.20* -0.25 -0.60

(-1.55) (-2.52) (-2.00) (-0.94) (-3.74) (-2.12) (-1.77) (-2.35) (-1.17) (-1.96) (-1.93) (-1.54) (-1.52)

P8 -0.62** -0.39*** -0.61** -0.48***-0.54*** -0.60** -0.55** -0.53*** -0.41** -0.47** -0.32*** -0.36** -0.60***

(-2.53) (-3.65) (-2.15) (-3.33) (-3.76) (-2.49) (-2.11) (-3.61) (-2.32) (-2.36) (-3.35) (-2.00) (-2.90)

P9 -0.50** -0.29** -0.22* -0.34***-0.41*** -0.39** -0.62***-0.41*** -0.26** -0.53***-0.23***-0.45***-0.61***

(-2.04) (-2.42) (-1.65) (-2.74) (-2.90) (-2.06) (-2.62) (-2.94) (-2.06) (-3.52) (-2.90) (-2.75) (-2.94)

P10 -0.63***-0.54*** -0.69** -0.64***-0.65***-0.70***-0.65***-0.66***-0.56***-0.55***-0.60***-0.60***-0.62***

(-3.76) (-4.00) (-2.50) (-3.81) (-3.89) (-3.52) (-2.82) (-3.94) (-2.73) (-3.69) (-3.83) (-3.16) (-3.79)

L/S -0.62***-0.72***-0.86***-0.74***-0.92***-0.90***-0.85***-0.70***-0.73***-0.84***-0.84***-0.76***-0.82***

t-stat (-4.14) (-4.40) (-2.75) (-4.19) (-4.28) (-3.87) (-4.20) (-4.33) (-3.00) (-4.06) (-4.21) (-3.47) (-4.17)
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Panel B: Independent bivariate sorts

SIZE BM AG GP MOM STR ILLIQ TURN SUE IVOL MAX DAE DALG

P1 0.20 0.15 0.16 0.20 0.16 0.16 0.19 0.18 0.14 0.20 0.13 0.19 0.10

(0.78) (0.59) (0.05) (0.62) (0.20) (0.85) (0.43) (0.74) (0.81) (0.98) (0.81) (0.43) (0.35)

P2 0.15 0.09 0.02 -0.09 -0.04 0.01 0.12 0.05 0.06 0.03 0.04 0.04 0.01

(0.14) (0.06) (0.08) (-0.94) (-0.18) (0.55) (0.12) (0.53) (0.61) (0.05) (0.43) (0.03) (0.82)

P3 0.16 0.11 -0.10 0.02 0.10 0.05 0.13 0.05 0.13 0.12 0.06 0.08 0.05

(0.17) (0.46) (-0.07) (0.60) (0.06) (0.67) (0.02) (0.54) (0.78) (0.63) (0.64) (0.07) (0.45)

P4 0.11 0.03 -0.06 -0.14 -0.07 -0.07 0.04 0.03 -0.02 -0.07 -0.02 0.02 -0.05

(0.09) (0.18) (-0.63) (-1.25) (-0.22) (-0.32) (0.23) (0.36) (-0.12) (-0.83) (-0.29) (0.51) (-1.17)

P5 0.09 -0.05 -0.09 -0.23 -0.12 -0.13 -0.01 -0.19 -0.03 -0.18 -0.14 -0.08 -0.16

(0.51) (-0.64) (-1.01) (-1.30) (-1.19) (-0.09) (-0.70) (-0.35) (-0.29) (-0.92) (-0.02) (-0.54) (-1.49)

P6 -0.02 -0.13 -0.38* -0.25 -0.16 -0.15 -0.01 -0.25 -0.16 -0.39 -0.25 -0.24 -0.23*

(-1.19) (-1.04) (-1.80) (-1.54) (-1.32) (-0.45) (-0.79) (-0.15) (-0.33) (-1.39) (-0.32) (-0.74) (-1.83)

P7 -0.32 -0.19* -0.42** -0.35** -0.18* -0.37 -0.38 -0.28 -0.41 -0.44 -0.28 -0.24 -0.27**

(-1.56) (-1.91) (-2.24) (-2.09) (-1.65) (-0.46) (-0.84) (-0.14) (-0.34) (-1.41) (-1.41) (-0.88) (-2.29)

P8 -0.49* -0.39** -0.47*** -0.42** -0.41** -0.42 -0.56** -0.43 -0.48 -0.51** -0.52** -0.42***-0.54***

(-1.81) (-2.43) (-2.62) (-2.23) (-2.18) (-1.56) (-2.57) (-0.81) (-0.70) (-2.27) (-2.41) (-2.66) (-2.83)

P9 -0.48 -0.27* -0.45** -0.38** -0.31** -0.38 -0.46* -0.42 -0.44 -0.46 -0.30 -0.35 -0.37***

(-1.58) (-1.95) (-2.32) (-2.10) (-2.12) (-1.49) (-1.84) (-0.27) (-0.67) (-1.63) (-1.55) (-1.37) (-2.79)

P10 -0.52* -0.42** -0.51***-0.52***-0.56*** -0.52** -0.59*** -0.54 -0.59** -0.57***-0.58***-0.51***-0.54***

(-1.89) (-2.43) (-2.81) (-2.60) (-2.83) (-2.40) (-2.95) (-1.58) (-2.50) (-2.75) (-2.91) (-2.71) (-2.85)

L/S -0.72**-0.57***-0.68***-0.72***-0.72***-0.68***-0.78***-0.71**-0.74***-0.77***-0.71***-0.70***-0.64***

t-stat (-2.39) (-3.08) (-3.55) (-3.28) (-3.58) (-3.04) (-3.74) (-2.33) (-3.16) (-3.48) (-3.68) (-3.43) (-3.61)
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Table 8: Fama-MacBeth Cross-Sectional Regressions

This table reports the Fama and MacBeth [1973] cross-sectional regression results. The first column is
from July 1976 to December 2019. The other three columns are from July 1982 to December 2019. The MFD
and the control variables in month t− 1 are matched to stock returns in month t. The monthly price-based
variables are calculated using the last non-missing observations prior to each month. The dependent variable
is the firm’s future raw return in the first two columns, the firm’s future excess return over its value-weighted
industry peers’ return (Column 3), or the firm’s DGTW adjusted return (Column 4). I include industry
dummies and classify each firm’s industry peers based on the Fama-French 48-industry classifications. All
returns are expressed in percentage. The MFD and firm-specific characteristics (i.e., control variables) are
defined in Table 1. Cross-sectional regressions are run every calendar month, and the time-series standard
errors are corrected for heteroskedasticity and autocorrelation. Newey and West [1987] adjusted t-statistics
are reported in parentheses. Coefficients marked with *, **, and *** are significant at the 10%, 5%, and 1%
level, respectively.

Independent Variables RET RET RET-INDRET DGTW-adj. RET

MFD -1.45*** -1.40*** -1.27*** -1.11***
(-2.78) (-2.65) (-3.06) (-3.57)

SIZE -0.06** -0.07** -0.06* -0.07**
(-2.21) (-2.02) (-1.81) (-2.17)

BM 0.12 0.08 0.10 0.06
(1.59) (1.12) (1.13) (0.83)

AG -0.06 -0.05 -0.09 -0.09
(-0.35) (-0.38) (-0.62) (-0.61)

GP 0.18 0.23 0.29 0.38
(0.48) (0.73) (0.66) (0.99)

MOM 0.45 0.54 0.38 0.45
(0.79) (1.02) (0.66) (0.73)

STR -1.20*** -1.24*** -1.18** -1.17***
(-2.95) (-3.30) (-2.44) (-3.54)

ILLIQ 0.98 4.91 5.35 11.22
(0.06) (0.20) (0.28) (0.55)

TURN -0.38 -0.05 -0.43 -0.09
(-0.98) (-0.19) (-1.01) (-0.29)

SUE 0.08** 0.08** 0.05* 0.05**
(2.15) (2.50) (1.74) (1.99)

IVOL -0.73 -0.80 -0.58 -0.79
(-1.23) (-1.35) (-0.82) (-1.13)

MAX -1.50*** -1.41** -1.23** -1.11**
(-2.81) (-2.56) (-2.38) (-2.04)

DAE -0.71 -0.58 -0.62 -0.68
(-1.41) (-1.26) (-1.17) (-1.02)

DALG -0.31 -0.32 -0.34
(-0.56) (-0.95) (-0.73)

Intercept 1.06* 0.98* 0.91 0.89
(1.72) (1.70) (1.45) (1.57)

Industry FEs Yes Yes No Yes

N 2,085,442 1,662,360 1,662,360 1,654,261
Adj. R2 0.178 0.195 0.104 0.185

51



Table 9: Institutional Ownership and MFD

Panel A reports the average institutional ownership (INST) of the MFD-sorted univariate decile port-
folios. High (low) INST indicates a higher institutional (retail) ownership. Panel B presents the Fama and
French [2018] six-factor alphas on the 5x10 bivariate portfolios of stocks dependently sorted into quintile
portfolios by INST and decile portfolios by MFD in each INST quintile. Panel B also reports the differences
of monthly six-factor alphas on MFD-sorted portfolios within each INST quintile. The last row presents
the difference between the six-factor alphas of the zero-cost MFD-sorted portfolios for INST5 vs. INST1
quintiles. Newey and West [1987] adjusted t-statistics are given in parentheses. The sample period is from
July 1976 to December 2019.

Panel A: Average INST of MFD-sorted decile portfolios

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P10-P1 t-stat

INST 0.34 0.32 0.31 0.30 0.29 0.29 0.28 0.27 0.26 0.26 -0.08 -6.18

Panel B: Six-factor alphas on INST&MFD-sorted portfolios

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P10-P1 t-stat

INST1 0.30 0.26 0.06 0.16 -0.20 -0.22 -0.60 -0.56 -0.79 -0.92 -1.23 -4.72
INST2 0.24 0.23 0.05 0.13 -0.16 -0.18 -0.50 -0.41 -0.59 -0.71 -0.95 -3.96
INST3 0.21 0.16 0.03 0.10 -0.11 -0.13 -0.37 -0.33 -0.46 -0.51 -0.72 -3.47
INST4 0.14 0.12 0.02 0.07 -0.08 -0.09 -0.24 -0.20 -0.29 -0.31 -0.46 -2.00
INST5 0.09 0.07 0.01 0.04 -0.05 -0.05 -0.13 -0.11 -0.12 -0.10 -0.19 -1.56

INST5 – INST1 -0.21 -0.20 -0.04 -0.12 0.15 0.17 0.47 0.45 0.66 0.82 1.04 3.27
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Table 10: Investor Attention and MFD

This table splits the stock sample into three tercile subsamples based on proxies of investor attention; (i)
institutional ownership (INST), (ii) analyst coverage (CVRG), and (iii) Abs(SUE). CVRG is the number of
analysts covering the firm at the end of the previous month. INST is the percentage of institutional ownership
at the end of the previous fiscal-year end. Abs(SUE) is defined as the absolute value of SUE based on the
last non-missing SUE during the 12 months preceding June. I conduct the dependent double sorting. I first
sort stocks into tercile portfolios every month based on an attention proxy – INST, CVRG, or abs(SUE).
Then, I divide each attention tercile into deciles based on the MFD. Table reports the excess returns and
alphas of long-short decile portfolios of stocks sorted by MFD within INST, CVRG, and Abs(SUE) terciles.
Portfolio sorts are conducted by every calendar month, and the time-series standard errors are corrected for
heteroskedasticity and autocorrelation. Newey and West [1987] adjusted t-statistics are given in parentheses.
Coefficients marked with *, **, and *** are significant at the 10%, 5%, and 1% level, respectively. The sample
period is from July 1976 to December 2019.

INST Excess Return CAPM FF6 SY HXZ DHS

Low -0.60*** -0.92*** -0.98*** -0.75*** -0.96*** -0.90***
(-3.90) (-4.59) (-4.57) (-3.43) (-3.74) (-3.84)

Medium -0.49*** -0.81*** -0.71*** -0.59*** -0.69*** -0.58***
(-2.71) (-2.87) (-3.59) (-2.86) (-2.78) (-2.88)

High -0.25* -0.40** -0.39* -0.34 -0.43* -0.39*
(-1.82) (-2.06) (-1.81) (-1.56) (-1.69) (-1.70)

High – Low 0.36** 0.52*** 0.59*** 0.41** 0.53** 0.51**
(2.18) (2.65) (2.89) (1.97) (2.14) (2.24)

CVRG Excess Return CAPM FF6 SY HXZ DHS

Low -0.58*** -0.88*** -0.91*** -0.73*** -0.90*** -0.87***
(-3.71) (-4.39) (-4.56) (-3.40) (-3.90) (-3.69)

Medium -0.39*** -0.62*** -0.67*** -0.49*** -0.62*** -0.80***
(-2.70) (-3.87) (-4.08) (-2.58) (-2.67) (-2.89)

High -0.28* -0.41** -0.45** -0.32 -0.42* -0.42*
(-1.70) (-2.18) (-2.13) (-1.49) (-1.85) (-1.69)

High – Low 0.29** 0.47** 0.46** 0.41** 0.49** 0.45**
(2.12) (2.32) (2.55) (2.00) (2.15) (2.10)

Abs(SUE) Excess Return CAPM FF6 SY HXZ DHS

Low -0.61*** -0.97*** -0.97*** -0.76*** -0.94*** -0.90***
(-3.83) (-4.70) (-4.59) (-3.42) (-4.04) (-3.92)

Medium -0.47*** -0.62*** -0.73*** -0.64** -0.70** -0.80***
(-3.47) (-3.68) (-3.91) (-2.45) (-2.56) (-2.88)

High -0.24* -0.41* -0.37* -0.31 -0.40 -0.37
(-1.65) (-1.91) (-1.91) (-1.35) (-1.49) (-1.61)

High – Low 0.37** 0.55*** 0.60*** 0.44** 0.54*** 0.53**
(2.40) (3.07) (2.95) (2.28) (2.80) (2.54)
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Table 11: Limits-to-arbitrage and MFD

This table splits the stock sample into three tercile subsamples based on proxies of arbitrage costs; (i)
idiosyncratic volatility (IVOL), (ii) illiquidity (ILLIQ), and (iii) market capitalization (SIZE). Idiosyncratic
volatility is constructed following Ang et al. [2006]. The illiquidity measure is calculated following Amihud
[2002]. SIZE is the log value of market capitalization at the end of the previous month. I conduct the
dependent double sorting. I first sort stocks into tercile portfolios every month based on an arbitrage cost
proxy – IVOL, ILLIQ, or SIZE. Then, I divide each arbitrage cost tercile into deciles based on the MFD.
Table reports the excess returns and alphas of long-short decile portfolios of stocks sorted by MFD within
IVOL, ILLIQ, and SIZE terciles. Portfolio sorts are conducted by every calendar month, and the time-series
standard errors are corrected for heteroskedasticity and autocorrelation. Newey and West [1987] adjusted
t-statistics are given in parentheses. Coefficients marked with *, **, and *** are significant at the 10%, 5%,
and 1% level, respectively. The sample period is from July 1976 to December 2019.

IVOL Excess Return CAPM FF6 SY HXZ DHS

Low -0.22 -0.30 -0.35 -0.24 -0.29 -0.30
(-1.41) (-1.44) (-1.46) (-1.09) (-1.25) (-1.27)

Medium -0.47*** -0.62*** -0.83*** -0.65*** -0.66*** -0.67***
(-3.52) (-3.94) (-3.99) (-3.03) (-2.98) (-2.58)

High -0.63*** -1.01*** -1.00*** -0.78*** -0.99*** -0.98***
(-4.29) (-4.74) (-4.88) (-3.74) (-4.17) (-3.97)

High – Low -0.41*** -0.71*** -0.66*** -0.54*** -0.70*** -0.69***
(-3.16) (-3.64) (-3.76) (-2.92) (-3.21) (-2.97)

ILLIQ Excess Return CAPM FF6 SY HXZ DHS

Low -0.33* -0.55* -0.54** -0.40 -0.52* -0.47*
(-1.65) (-1.95) (-2.10) (-1.44) (-1.75) (-1.75)

Medium -0.36*** -0.65*** -0.59*** -0.46*** -0.57*** -0.67***
(-2.97) (-3.34) (-3.92) (-2.86 ) (-2.69) (-3.13)

High -0.53*** -0.83*** -0.85*** -0.61*** -0.85*** -0.78***
(-3.50 ) (-3.82) (-4.06) (-2.95) (-3.21) (-3.36)

High – Low -0.20** -0.28** -0.31** -0.21* -0.32 -0.31*
(-2.04) (-2.06) (-2.16) (-1.66) (-1.61) (-1.78)

SIZE Excess Return CAPM FF6 SY HXZ DHS

Low -0.62*** -0.97*** -0.99*** -0.77*** -1.00*** -0.91***
(-4.13) (-4.64) (-4.74) (-3.54) (-4.02) (-3.86)

Medium -0.41*** -0.59*** -0.81*** -0.63** -0.81*** -0.63***
(-3.47) (-2.84) (-3.36) (-2.41) (-2.97) (-2.87)

High -0.23 -0.32* -0.38* -0.29 -0.34 -0.36
(-1.47) (-1.81) (-1.73) (-1.28) (-1.54) (-1.48)

High – Low 0.39*** 0.65*** 0.61*** 0.48** 0.66*** 0.55**
(2.80) (2.97) (3.15) (2.37) (2.60) (2.50)
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Table 12: Quarterly Earnings Prediction

This table reports the results from Fama and MacBeth [1973] regressions of individual firm’s one-
quarter- to four-quarter-ahead SUE on the past MFD and control variables. All independent variables are
calculated using the last non-missing observations prior to each quarter. I classify each firm’s industry peers
based on the Fama-French 48-industry classifications. I winsorize all variables at the 1% and 99% levels
and standardize all independent variables to have a zero mean and standard deviation of one. The control
variables are from Table 6, but their estimated coefficients are not shown here. Cross-sectional regressions
are run every calendar quarter, and the time-series standard errors are corrected for heteroskedasticity and
autocorrelation. Newey and West [1987] adjusted t-statistics are given in parentheses. Coefficients marked
with *, **, and *** are significant at the 10%, 5%, and 1% level, respectively. The sample period is from
July 1976 to December 2019.

Independent Variables SUEq+1 SUEq+2 SUEq+3 SUEq+4

MFD -0.27*** -0.21** -0.14 -0.04
(-3.05) (-2.10) (-1.54) (-0.23)

SUEq 0.69*** 0.55*** 0.48*** 0.64***
(5.23) (3.56) (3.51) (5.14)

Controls Yes Yes Yes Yes
Industry FEs Yes Yes Yes Yes

N 555716 539273 522894 507466
Adj. R2 0.24 0.19 0.16 0.12
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Table 13: Predicting Future Earnings Announcement Returns

This table reports the long-short value-weighted portfolio return and alpha spreads on MFD-sorted
portfolios during the periods with and without earnings announcement. I divide the whole sample period
into months with earnings announcement and months without earnings announcement. Following Engelberg
et al. [2018], I obtain earnings announcement dates from the Compustat quarterly database. I define the
months with earnings announcement when there is earnings announcement in that month and define the
months without earnings announcement when there is no earnings announcement in that month. Newey
and West [1987] adjusted t-statistics are given in parentheses. Coefficients marked with *, **, and *** are
significant at the 10%, 5%, and 1% level, respectively. The sample period is from July 1976 to December
2019.

Earnings announcement Excess Return CAPM FF6 SY HXZ DHS

P1 1.01*** 0.27 0.28 0.01 0.25 0.21
(4.12) (1.33) (1.25) (0.55) (1.31) (1.34)

P10 0.16 -0.73*** -0.75*** -0.76*** -0.74*** -0.74***
(0.03) (-3.80) (-2.71) (-3.45) (-3.76) (-4.06)

L/S -0.86*** -1.00*** -1.03*** -0.77*** -0.99*** -0.95***
(-3.68) (-4.61) (-3.60) (-3.56) (-4.55) (-4.83)

Non-earnings announcement Excess Return CAPM FF6 SY HXZ DHS

P1 0.63** 0.11 0.11 0.01 0.11 0.09
(2.57) (0.52) (0.51) (0.22) (0.53) (0.53)

P10 0.31 -0.30 -0.29 -0.30 -0.29 -0.30
(0.05) (-1.45) (-1.14) (-1.37) (-1.58) (-1.59)

L/S -0.32** -0.41** -0.40* -0.30* -0.40** -0.39**
(-2.01) (-2.07) (-1.73) (-1.66) (-2.21) (-2.22)
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Table 14: Testing Risk-based Explanations

This table presents the results from testing potential risk-based explanations. Table reports the average
portfolio risk attributes for each decile portfolio sorted by MFD, and the differences for the risk attributes
between deciles 10 and 1 and the associated Newey and West [1987] adjusted t-statistics. P1 is the portfolio
of stocks with the lowest MFD and P10 is the portfolio of stocks with the highest MFD. The CAPM implied
measures of total volatility (TVOL), idiosyncratic volatility (IVOL), and market (MKT) Beta are estimated
for each month using the past 60-month individual stock returns. The individual stock exposures (Betas) to
the change in VIX, consumption growth rate, and each factor are estimated for each month using the past
60-month observations. The sample period is from July 1976 to December 2019.

Risk P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P10-P1 t-stat

CAPM
TVOL 0.09 0.09 0.10 0.10 0.10 0.11 0.11 0.11 0.12 0.12 0.03 8.32
IVOL 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.01 4.24
MKT Beta 0.97 0.93 1.01 1.01 0.98 0.97 0.99 0.97 0.96 1.00 0.03 2.11

ICAPM
VIX Beta -0.02 -0.02 -0.02 -0.03 -0.03 -0.03 -0.04 -0.04 -0.04 -0.05 -0.03 -1.28

CCAPM
Consumption Growth Beta 0.40 0.42 0.47 0.48 0.50 0.51 0.52 0.52 0.53 0.54 0.14 2.02

Factor Exposures
SMB Beta 0.87 0.88 0.81 0.89 0.93 0.96 0.98 0.96 0.94 0.91 0.04 2.75
HML Beta -0.22 -0.22 -0.07 -0.06 -0.10 -0.03 -0.08 -0.01 -0.02 0.04 0.26 14.62
RMW Beta -0.26 -0.29 -0.15 -0.07 -0.12 -0.15 -0.16 -0.20 -0.22 -0.20 0.06 2.48
CMA Beta 0.02 0.18 0.08 0.13 0.07 0.09 0.16 0.05 0.04 0.09 0.07 1.64
MOM Beta -0.14 -0.12 -0.14 -0.14 -0.17 -0.14 -0.13 -0.15 -0.14 -0.13 0.01 0.13
LIQ Beta 0.01 0.02 0.03 0.03 0.03 0.04 0.04 0.05 0.06 0.07 0.06 3.14
MGMT Beta -0.26 -0.23 -0.14 -0.11 -0.21 -0.15 -0.15 -0.18 -0.20 -0.18 0.08 2.86
PERF Beta -0.13 -0.15 -0.16 -0.16 -0.18 -0.19 -0.18 -0.21 -0.23 -0.25 -0.12 -2.42
IA Beta -0.17 -0.05 -0.05 0.00 -0.08 0.01 -0.02 -0.03 -0.01 0.06 0.23 9.25
ROE Beta -0.36 -0.38 -0.35 -0.33 -0.34 -0.34 -0.43 -0.44 -0.41 -0.42 -0.06 -1.54
FIN Beta -0.41 -0.38 -0.26 -0.26 -0.31 -0.29 -0.31 -0.31 -0.31 -0.29 0.12 7.19
PEAD Beta -0.09 -0.13 -0.14 -0.20 -0.17 -0.17 -0.21 -0.21 -0.24 -0.18 -0.09 -1.36
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Machine Forecast Disagreement
Online appendix

Table OA1 reports out-of-sample R-squared (R2
OS , in percentage) of predicting stock returns with

12 machine learning models and 310 stock characteristics.

Table OA2 compares the monthly out-of-sample prediction among 12 machine learning models

using Diebold-Mariano tests.

Table OA3 reports the excess returns of the long-short stock portfolios constructed based on the

expected return forecasts obtained from machine learning models.

Table OA4 reports the six-factor alphas of the long-short stock portfolios constructed based on the

expected return forecasts obtained from machine learning models.

Table OA5 reports results from the univariate portfolios of stocks sorted by machine forecast error

disagreement (MFED).

Table OA6 reports results from the univariate portfolios of stocks sorted by machine MAX-MIN

difference (MAX-MIN).

Section OB presents 310 firm characteristics used to forecast stock returns.

Section OC provides a description of the machine learning models.



Table OA1: Out-of-sample R-squared performance using the 310 stock characteristics

This table reports the out-of-sample R-squared (R2
OS , in percentage) from predicting one-month-ahead

stock returns using 12 machine learning models and 310 stock characteristics. The models include (i)
dimension reduction models: principal components analysis (PCA), Scaled PCA (SPCA), and Partial Least
squares (PLS); (ii) penalized linear regressions: LASSO, Ridge, and Elastic Net (E-Net); (iii) regression
trees: random forests (RF), Gradient Boosted Regression Tree (GBRT), and Extreme Tree (ET); and (iv)
neural networks: Feed Forward Neural Network (FNN), Recurrent Neural Network (RNN), and Long Short-
Term Memory Neural Network (LSTM). The R2

OS pools prediction errors across firms and over time into a
grand panel-level assessment of each model and is defined as,

R2
OS = 1−

∑
(i,t)∈T3

(ri,t+1 − r̂i,t+1)
2∑

(i,t)∈T3
r2i,t+1

where p-values associated with R2
OS are reported using one-sided test. The full sample covers the period

from July 1966 to December 2019. I use ten years (first six years as the training sample T1 and subsequent
four years as the validation sample T2) as the rolling window for estimating the parameters and tuning the
hyperparameters of machine learning forecasting models. The out-of-sample “test” subsample (from July
1976 to December 2019, T3) is used to evaluate a model’s forecasting performance. All of the R2

OS associated
with machine learning models are statistically significant with p-values less than 1%.

PCA SPCA PLS LASSO Ridge E-Net RF GBRT ET FNN RNN LSTM

R2
OS 0.37 0.48 0.46 0.13 0.08 0.13 0.51 0.54 0.56 0.57 0.58 0.59
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Table OA2: Comparison of monthly out-of-sample prediction using Diebold-Mariano tests

This table reports pairwise Diebold-Mariano test statistics comparing the out-of-sample stock-level
prediction performance (R2

OS) among the models used in Table OA1. Positive numbers indicate the column
model outperforms the row model. Numbers in bold denote statistical significance at the 5% level or better.

SPCA PLS LASSO Ridge E-Net RF GBRT ET FNN RNN LSTM

PCA 0.45 0.40 -1.29 -1.32 -1.37 1.36 1.39 1.35 1.89 1.82 1.87
SPCA -0.13 -1.37 -1.37 -1.41 1.30 1.33 1.29 1.72 1.71 1.72
PLS -1.34 -1.36 -1.39 1.35 1.37 1.30 1.75 1.77 1.78
LASSO -0.42 0.19 2.24 2.10 2.13 3.16 3.11 3.03
Ridge 0.43 2.36 2.20 2.19 3.29 3.18 3.17
E-Net 2.22 2.08 2.11 3.14 3.09 3.01
RF 0.21 0.25 1.36 1.41 1.41
GBRT 0.19 1.34 1.30 1.34
ET 1.32 1.26 1.29
FNN 0.12 0.14
RNN 0.12
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Table OA3: Excess returns of machine learning portfolios sorted by expected returns

This table reports the monthly excess returns of equal-weighted and value-weighted decile portfolios
sorted by the out-of-sample machine learning expected return forecasts using the 310 stock characteristics
(i.e., r̂i,t+1 where (i,t)∈ T3 , the test subsample)). At the end of each month, I calculate one-month-ahead
out-of-sample stock return predictions for each method. In Panel A (Panel B), I sort stocks into deciles based
on each model’s forecasts and construct the equal-weighted (value-weighted) portfolio based on the out-of-
sample forecasts. “Low” corresponds to the portfolio with the lowest expected return (decile 1), “High”
corresponds to the portfolio with the highest expected return (decile 10), and “High–Low” corresponds
to the long short portfolio that buys the highest expected return stocks (decile 10) and sells the lowest
(decile 1). The returns are in monthly percentage and Newey and West [1987] adjusted t-statistics are
given in parentheses. Coefficients marked with *, **, and *** are significant at the 10%, 5%, and 1% level,
respectively.

Panel A: Excess returns of equal-weighted machine learning portfolios

Equal-weight PCA SPCA PLS LASSO Ridge E-Net RF GBRT ET FNN RNN LSTM
Low -0.39 -0.68 -0.53 0.05 0.03 -0.13 -0.61 -0.82 -0.87 -0.97 -1.06 -1.00
2 0.44 0.16 0.32 0.57 0.48 0.41 0.24 0.22 0.23 0.16 0.18 0.18
3 0.59 0.41 0.55 0.62 0.62 0.52 0.58 0.49 0.55 0.45 0.54 0.45
4 0.76 0.57 0.63 0.79 0.65 0.65 0.61 0.61 0.58 0.68 0.72 0.55
5 0.64 0.70 0.72 0.75 0.56 0.78 0.65 0.77 0.71 0.78 0.73 0.71
6 0.84 0.81 0.76 0.86 0.76 0.78 0.77 0.81 0.77 0.80 0.83 0.79
7 0.67 1.02 0.75 0.92 0.53 0.84 0.77 0.86 0.85 0.82 0.94 0.83
8 0.83 1.06 0.87 0.93 0.75 1.02 0.95 0.85 0.99 0.89 0.96 1.07
9 1.13 1.32 1.22 1.20 0.99 1.18 1.27 1.13 1.14 1.24 1.11 1.26
High 1.75 1.90 1.90 1.58 1.39 1.47 2.21 2.24 2.38 2.47 2.42 2.49

High – Low 2.14*** 2.58*** 2.43*** 1.52*** 1.35*** 1.60*** 2.81*** 3.06*** 3.26*** 3.43*** 3.48*** 3.49***
t-stat (4.14) (5.00) (4.69) (2.95) (2.62) (3.09) (5.44) (5.91) (6.30) (6.64) (6.72) (7.10)

Panel B: Excess returns of value-weighted machine learning portfolios

Value-weight PCA SPCA PLS LASSO Ridge E-Net RF GBRT ET FNN RNN LSTM
Low -0.21 -0.40 -0.28 0.03 0.02 -0.07 -0.35 -0.45 -0.47 -0.54 -0.62 -0.53
2 0.25 0.09 0.18 0.33 0.24 0.21 0.13 0.11 0.13 0.10 0.09 0.09
3 0.34 0.22 0.30 0.35 0.32 0.30 0.30 0.25 0.28 0.25 0.31 0.26
4 0.38 0.34 0.37 0.47 0.33 0.38 0.31 0.36 0.32 0.35 0.42 0.28
5 0.33 0.42 0.38 0.41 0.33 0.40 0.38 0.40 0.40 0.41 0.37 0.39
6 0.44 0.47 0.44 0.46 0.39 0.43 0.39 0.42 0.46 0.44 0.47 0.47
7 0.37 0.56 0.39 0.55 0.30 0.46 0.43 0.49 0.44 0.49 0.48 0.47
8 0.46 0.60 0.45 0.50 0.42 0.54 0.54 0.44 0.60 0.51 0.49 0.55
9 0.60 0.76 0.69 0.69 0.53 0.65 0.69 0.64 0.66 0.72 0.62 0.75
High 0.92 1.02 0.99 0.89 0.71 0.78 1.25 1.14 1.37 1.32 1.43 1.36

High – Low 1.14** 1.42*** 1.27** 0.86 0.69 0.85 1.60*** 1.59*** 1.83*** 1.86*** 2.05*** 1.89***
t-stat (2.27) (2.71) (2.46) (1.47) (1.33) (1.40) (2.67) (2.68) (2.91) (3.08) (3.39) (3.70)
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Table OA4: Six-factor alphas of machine learning portfolios sorted by expected returns

This table reports the monthly Fama and French [2018] six-factor alphas of equal-weighted and value-
weighted decile portfolios of stocks sorted by the out-of-sample machine learning expected return forecasts
using the 310 stock characteristics (i.e., r̂i,t+1 where (i,t)∈ T3 , the test subsample). At the end of each
month, I calculate one-month-ahead out-of-sample stock return predictions for each method. In Panel A
(Panel B), I sort stocks into deciles based on each model’s forecasts and construct the equal-weighted (value-
weighted) portfolio based on the out-of-sample forecasts. “Low” corresponds to the portfolio with the lowest
expected return (decile 1), “High” corresponds to the portfolio with the highest expected return (decile 10),
and “High–Low” corresponds to the long short portfolio that buys the highest expected return stocks (decile
10) and sells the lowest (decile 1). The returns are in monthly percentage and Newey and West [1987]
adjusted t-statistics are given in parentheses. Coefficients marked with *, **, and *** are significant at the
10%, 5%, and 1% level, respectively.

Panel A: FF6 alphas of equal-weighted machine learning portfolios

Equal-weight PCA SPCA PLS LASSO Ridge E-Net RF GBRT ET FNN RNN LSTM

Low -0.48 -0.82 -0.66 0.07 0.04 -0.16 -0.77 -1.02 -1.13 -1.22 -1.31 -1.20
2 0.40 0.17 0.29 0.59 0.53 0.44 0.25 0.24 0.24 0.16 0.17 0.18
3 0.63 0.40 0.52 0.67 0.57 0.52 0.55 0.53 0.56 0.45 0.54 0.47
4 0.75 0.55 0.57 0.86 0.62 0.71 0.61 0.63 0.60 0.66 0.79 0.57
5 0.62 0.67 0.66 0.77 0.56 0.79 0.71 0.77 0.74 0.76 0.76 0.75
6 0.90 0.81 0.72 0.86 0.81 0.72 0.69 0.81 0.84 0.78 0.82 0.74
7 0.71 1.08 0.74 0.90 0.54 0.82 0.70 0.80 0.76 0.91 0.86 0.83
8 0.78 1.09 0.85 1.00 0.78 1.02 0.99 0.78 1.09 0.86 0.99 1.09
9 1.23 1.36 1.11 1.18 1.08 1.29 1.24 1.21 1.18 1.31 1.08 1.24
High 1.37 1.48 1.44 1.20 0.98 1.17 1.73 1.69 1.90 1.78 1.72 1.92

High – Low 1.85*** 2.30*** 2.10*** 1.13*** 0.94*** 1.33*** 2.50*** 2.71*** 3.03** 2.99*** 3.03*** 3.12***
t-stat (5.04) (6.57) (5.66) (3.62) (3.28) (4.09) (6.80) (7.85) (7.80) (8.19) (8.43) (9.18)

Panel B: FF6 alphas of value-weighted machine learning portfolios

Value-weight PCA SPCA PLS LASSO Ridge E-Net RF GBRT ET FNN RNN LSTM

Low -0.15 -0.38 -0.13 0.01 0.01 -0.02 -0.38 -0.49 -0.46 -0.49 -0.56 -0.56
2 0.15 0.07 0.06 0.07 0.08 0.06 0.10 0.09 0.09 0.08 0.09 0.08
3 0.24 0.17 0.09 0.10 0.07 0.09 0.25 0.19 0.27 0.20 0.23 0.18
4 0.28 0.23 0.14 0.11 0.08 0.13 0.31 0.30 0.23 0.30 0.34 0.24
5 0.21 0.29 0.11 0.12 0.06 0.13 0.32 0.32 0.29 0.35 0.32 0.33
6 0.28 0.37 0.14 0.15 0.13 0.16 0.35 0.38 0.38 0.31 0.32 0.38
7 0.23 0.47 0.13 0.16 0.08 0.11 0.42 0.41 0.41 0.32 0.42 0.32
8 0.29 0.49 0.17 0.15 0.14 0.15 0.43 0.39 0.45 0.37 0.48 0.54
9 0.38 0.60 0.19 0.13 0.13 0.23 0.56 0.50 0.58 0.56 0.43 0.47
High 0.51 0.58 0.18 0.11 0.16 0.21 0.75 0.71 0.77 0.88 0.84 0.87

High – Low 0.66*** 0.96*** 0.31 0.10 0.15 0.23 1.13*** 1.20*** 1.24*** 1.37*** 1.40*** 1.42***
t-stat (2.74) (3.24) (0.97) (0.75) (0.65) (0.62) (3.92) (4.06) (4.45) (4.90) (5.04) (4.70)
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Table OA5: Univariate portfolios of stocks sorted by machine forecast error disagreement

This table reports the average monthly excess returns and alphas on the value-weighted and equal-
weighted portfolios of stocks sorted by the machine forecast error disagreement (MFED). For each month
t from July 1976 to December 2019, individual stocks are sorted into decile portfolios based on MFED at
month t − 1, and are held for the next one month. P1 is the portfolio of stocks with the lowest MFED
and P10 is the portfolio of stocks with the highest MFED. L/S is a zero-cost portfolio that buys stocks in
decile 10 (highest MFED) and sells stocks in decile 1 (lowest MFED). All returns and alphas are expressed
in percentage. Excess return is the raw return of the portfolio over the risk-free rate. Alpha is the intercept
from a time-series regression of monthly excess returns on the factors of alternative models: the CAPM,
Fama and French [2018] six-factor model (FF6), Stambaugh and Yuan [2017] mispricing-factor model (SY),
Hou et al. [2015] q4-factor model (HXZ), and Daniel et al. [2020] behavioral factor model (DHS). Newey
and West [1987] adjusted t-statistics are given in parentheses. Coefficients marked with *, **, and *** are
significant at the 10%, 5%, and 1% level, respectively. The sample period is from July 1976 to December
2019.

Panel A: Value-weighted MFED-sorted decile portfolios

Rank Excess Return CAPM FF6 SY HXZ DHS

P1 0.56** 0.15 0.15 0.01 0.14 0.11
(2.21) (0.72) (0.65) (0.30) (0.69) (0.74)

P2 0.46* 0.14 0.13 -0.02 0.12 0.10
(1.79) (0.43) (0.40) (-0.06) (0.67) (0.39)

P3 0.44* 0.04 0.03 -0.12 -0.03 -0.08
(1.71) (0.64) (0.18) (-0.05) (-0.28) (-0.25)

P4 0.44* 0.13 0.07 -0.06 0.09 -0.02
(1.75) (0.33) (0.40) (-0.06) (0.32) (-0.29)

P5 0.34 -0.05 -0.09 -0.13 -0.14 -0.27
(1.62) (-0.82) (-0.26) (-0.65) (-0.16) (-0.78)

P6 0.34 -0.08 -0.10 -0.15 -0.28 -0.30
(1.06) (-0.89) (-0.47) (-0.78) (-0.39) (-1.48)

P7 0.28 -0.34 -0.29 -0.32 -0.38 -0.38*
(0.47) (-1.52) (-1.35) (-1.16) (-1.58) (-1.68)

P8 0.28 -0.23 -0.25 -0.20 -0.37 -0.29
(0.70) (-1.37) (-0.61) (-0.77) (-1.58) (-1.54)

P9 0.25 -0.39* -0.35 -0.35 -0.37* -0.39**
(0.25) (-1.67) (-1.43) (-1.57) (-1.75) (-2.16)

P10 0.21 -0.40** -0.39 -0.42* -0.41** -0.40**
(0.04) (-1.98) (-1.54) (-1.94) (-2.07) (-2.21)

L/S -0.35** -0.55*** -0.54*** -0.43* -0.55** -0.52**
(-2.28) (-2.64) (-2.69) (-1.91) (-2.24) (-2.25)
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Panel B: Equal-weighted MFED-sorted decile portfolios

Rank Excess Return CAPM FF6 SY HXZ DHS

P1 0.67** 0.21 0.25 -0.01 0.16 0.13

(2.52) (0.77) (0.28) (-0.44) (0.34) (0.77)

P2 0.59** 0.09 0.13 -0.25 0.06 -0.03

(2.16) (0.29) (0.03) (-0.64) (0.33) (-1.07)

P3 0.46 0.07 0.09 -0.29 0.03 -0.17

(1.64) (0.25) (-0.31) (-0.98) (-0.04) (-1.34)

P4 0.44 0.04 -0.01 -0.28 -0.08 -0.23

(1.43) (0.08) (-0.63) (-1.13) (-0.62) (-1.41)

P5 0.43 -0.08 -0.05 -0.35 -0.08 -0.30

(1.37) (-0.03) (-0.98) (-1.53) (-1.46) (-1.46)

P6 0.39 -0.17 -0.11 -0.38** -0.11* -0.30

(1.26) (-0.23) (-1.05) (-2.11) (-1.66) (-1.53)

P7 0.31 -0.19 -0.24 -0.42** -0.29* -0.32*

(1.22) (-1.10) (-1.10) (-2.12) (-1.88) (-1.72)

P8 0.30 -0.21 -0.29 -0.42** -0.44** -0.36**

(1.21) (-1.18) (-1.53) (-2.17) (-2.18) (-2.05)

P9 0.24 -0.33 -0.34** -0.45** -0.47** -0.43***

(1.17) (-1.61) (-2.02) (-2.40) (-2.27) (-3.07)

P10 0.19 -0.47** -0.56*** -0.53*** -0.55** -0.49***

(0.97) (-2.09) (-2.80) (-2.66) (-2.38) (-3.10)

L/S -0.48*** -0.68*** -0.81*** -0.52*** -0.71*** -0.62***

(-3.14) (-3.17) (-3.35) (-2.81) (-3.48) (-3.22)
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Table OA6: Univariate portfolios of stocks sorted by machine MAX-MIN difference

This table reports the average monthly excess returns and alphas on the value-weighted and equal-
weighted portfolios of stocks sorted by the machine MAX-MIN difference (MAX-MIN). For each month t
from July 1976 to December 2019, individual stocks are sorted into decile portfolios based on MAX-MIN at
month t− 1, and are held for the next one month. P1 is the portfolio of stocks with the lowest MAX-MIN
and P10 is the portfolio of stocks with the highest MAX-MIN. L/S is a zero-cost portfolio that buys stocks
in decile 10 (highest MAX-MIN) and sells stocks in decile 1 (lowest MAX-MIN). All returns and alphas are
expressed in percentage. Excess return is the raw return of the portfolio over the risk-free rate. Alpha is
the intercept from a time-series regression of monthly excess returns on the factors of alternative models:
the CAPM, Fama and French [2018] six-factor model (FF6), Stambaugh and Yuan [2017] mispricing-factor
model (SY), Hou et al. [2015] q4-factor model (HXZ), and Daniel et al. [2020] behavioral factor model (DHS).
Newey and West [1987] adjusted t-statistics are given in parentheses. Coefficients marked with *, **, and
*** are significant at the 10%, 5%, and 1% level, respectively. The sample period is from July 1976 to
December 2019.

Panel A: Value-weighted MAX-MIN-sorted decile portfolios

Rank Excess Return CAPM FF6 SY HXZ DHS

P1 0.50* 0.13 0.14 0.01 0.12 0.10
(1.83) (0.66) (0.58) (0.26) (0.61) (0.64)

P2 0.48* 0.14 0.13 -0.02 0.13 0.10
(1.72) (0.44) (0.41) -(0.06) (0.65) (0.37)

P3 0.44 0.04 0.02 -0.12 -0.03 -0.08
(1.63) (0.65) (0.18) (-0.05) (-0.27) (-0.26)

P4 0.46* 0.13 0.07 -0.06 0.09 -0.02
(1.79) (0.32) (0.39) (-0.06) (0.31) (-0.30)

P5 0.33 -0.05 -0.09 -0.13 -0.15 -0.28
(1.55) (-0.85) (-0.27) (-0.61) (-0.16) (-0.78)

P6 0.34 -0.09 -0.10 -0.15 -0.28 -0.29
(1.11) (-0.93) (-0.48) (-0.77) (-0.40) (-1.47)

P7 0.28 -0.33 -0.29 -0.32 -0.38 -0.38
(0.45) (-1.46) (-1.36) (-1.21) (-1.61) (-1.64)

P8 0.28 -0.22 -0.25 -0.20 -0.38 -0.30
(0.67) (-1.35) (-0.61) (-0.80) (-1.62) (-1.52)

P9 0.25 -0.37* -0.35 -0.36 -0.36* -0.37**
(0.25) (-1.65) (-1.48) (-1.63) (-1.79) (-2.06)

P10 0.19 -0.36* -0.34 -0.37 -0.37* -0.34*
(0.03) (-1.77) (-1.33) (-1.61) (-1.84) (-1.84)

L/S -0.31** -0.49** -0.48** -0.38* -0.49** -0.44**
(-2.09) (-2.31) (-2.50) (-1.78) (-2.07) (-2.09)
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Panel B: Equal-weighted MAX-MIN-sorted decile portfolios

Rank Excess Return CAPM FF6 SY HXZ DHS

P1 0.59** 0.18 0.22 -0.01 0.15 0.12

(2.22) (0.68) (0.24) -(0.38) (0.29) (0.67)

P2 0.56** 0.09 0.14 -0.25 0.06 -0.04

(2.23) (0.30) (0.03) (-0.62) (0.33) (-1.03)

P3 0.48 0.07 0.09 -0.29 0.03 -0.16

(1.61) (0.25) (-0.31) (-0.98) (-0.04) (-1.34)

P4 0.42 0.04 -0.01 -0.29 -0.09 -0.23

(1.39) (0.08) (-0.60) (-1.10) (-0.60) (-1.43)

P5 0.43 -0.08 -0.05 -0.34 -0.08 -0.30

(1.36) (-0.03) (-1.00) (-1.53) (-1.52) (-1.43)

P6 0.39 -0.18 -0.11 -0.39** -0.11* -0.29

(1.26) (-0.22) (-1.01) (-2.04) (-1.71) (-1.49)

P7 0.31 -0.19 -0.24 -0.41** -0.28* -0.31*

(1.19) (-1.10) (-1.14) (-2.08) (-1.95) (-1.75)

P8 0.31 -0.22 -0.29 -0.40** -0.44** -0.37*

(1.19) (-1.21) (-1.54) (-2.10) (-2.20) (-1.95)

P9 0.25 -0.33* -0.34** -0.46** -0.48** -0.44***

(1.17) (-1.67) (-2.03) (-2.37) (-2.25) (-3.18)

P10 0.17 -0.41* -0.48** -0.48** -0.47** -0.41***

(0.88) (-1.94) (-2.46) (-2.34) (-2.18) (-2.76)

L/S -0.42*** -0.59*** -0.70*** -0.47*** -0.62*** -0.53***

(-2.93) (-2.79) (-3.02) (-2.66) (-3.06) (-2.92)
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Section OB. Firm characteristics

Table : Firm characteristics

(1)

Abbrev.

(2)

Characteristic

(3)

Abbrev.

(4)

Characteristic

Panel A: Momentum (30)

ABR Earnings announcement abnormal returns R36 Long-term reversal, 36 months

Alli Strategic alliance peer momentum R6 6-month momentum

Board Common board peer momentum R6 Long-term reversal, 60 months

Cust customer momentum RE Long-term reversal, 60 months

DEF Change in forecasted earnings per share RESID11 Residual momentum, prior 11-month returns

DR6 Change in 6-month momentum RESID6 Residual momentum, prior 6-month returns

EAR Earnings announcement returns RINT Intermediate momentum

ES1 left-tail momentum, 1% expected shortfall RS Revenue surprise

ES5 left-tail momentum, 5% expected shortfall Share Shared analyst peer momentum

Geo Geographic peer momentum Stand Standalone-conglomerate momentum

IM Industry momentum SUE Standardized unexpected earnings

NEI Number of consecutive earnings increases Tech Technological peer momentum

R1 1-month momentum reversal TES Tax expense surprise

R11 12-month momentum VAR1 left-tail momentum, 1% VaR

R18 Momentum reversal VAR5 left-tail momentum, 5% VaR

Panel B: Value vs. growth (44)

BM Book to market equity IRC Intangible return, cash flow to price

BMIA Industry-adjusted book to market equity IRE Intangible return, earnings to price

BMJ Book to June-end market equity IRS Intangible return, sales to price

BMQ Quarterly book to market equity LTG Analyst long-term growth forecasts

CD Cash flow to debt NDP Net debt to price

DM Debt to market equity NDPQ Quarterly net debt to price

DMQ Quarterly debt to market equity NOP Net payout yield

DP Dividend yield NOPQ Quarterly net payout yield

DPQ Quarterly dividend yield OCP Operating cash flow to price

DUR Equity duration OCPQ Quarterly operating cash flow to price

EBP Enterprise book to price OP Payout yield

EBPQ Quarterly enterprise book to price OPQ Quarterly payout yield

EFP Analyst earnings forecast to price Q Tobinâ€™s q

EM Enterprise multiple SG Annual sales growth

EMQ Quarterly enterprise multiple SGQ Quarterly sales growth

EP Earnings to price SGR 5-year sales growth rank

EPQ Quarterly earnings to price SP Sales to price
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Table : Firm characteristics (continued)

(1)

Abbrev.

(2)

Characteristic

(3)

Abbrev.

(4)

Characteristic

FCB Free cash flow to book equity SPQ Quarterly sales to price

G5Y Forecasted growth in 5-year earnings per share VHP Intrinsic value to market equity

IRB Intangible return, book to market

Panel C: Investment (35)

ACI Abnormal corporate investment DSO Change in shares outstanding

CDI Composite debt issuance DSTI Change in short-term investments

CEI Composite equity issuance DWC Change in net noncash working capital

CI Corporate investment IA Investment to assets

DA Asset growth IAQ Quarterly investment to assets

DBE Change in common equity IG Investment growth

DCOA Change in current operating assets IG2 2-year investment growth

DCOL Change in current operating liabilities IG3 3-year investment growth

DDEP Percent change in depreciation IGIA Industry-adjusted percent change

in investment

DEP Depreciation to PP&E IPO New equity issues

DFIN Change in financial assets IVC Inventory changes

DFNL Change in financial liabilities IVG Inventory growth

DLNO Change in long-term net operating assets NDF Net debt finance

DLTI Change in long-term investments NEF Net equity finance

DNCA Change in noncurrent operating assets NOA Net operating assets

DNCL Change in noncurrent operating liabilities NSI Net stock issues

DNCO Change in net noncurrent operating assets NXF Net external finance

DNOA Change in net operating assets

Panel D: Profitability (52)

ATO Asset turnover DPMIA Industry-adjusted change in profit margin

ATOQ Quarterly asset turnover DROAQ 4-quarter change in return on assets

BL Book leverage DROEQ 4-quarter change in return on equity

BLQ Quarterly book leverage EPS Earnings per share

CLA Cash-based operating profits to lagged book F Piotroski fundamental score

CLAQ Quarterly cash-based operating profits to lagged FP Failure profitability

book assets

COP Cash-based operating profits to book assets FQ Quarterly Piotroski fundamental score

CR Credit rating G Mohanram growth score

CTO Capital turnover GLA Gross profits to lagged assets

CTOQ Quarterly capital turnover GLAQ Quarterly gross profits to lagged assets

DATO Change in asset turnover GPA Gross profits to assets
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Table : Firm characteristics (continued)

(1)

Abbrev.

(2)

Characteristic

(3)

Abbrev.

(4)

Characteristic

DATOIA Industry-adjusted change in asset turnover IPM Pre-tax income to sales

DPM Change in profit margin O Ohlson O-score

OLA Operating profits to lagged book assets RNAQ Quarterly return on net operating assets

OLAQ Quarterly operating profits to lagged book assets ROA Return on assets

OLE Operating profits to lagged book equity ROAQ Quarterly return on assets

OLEQ Quarterly operating profits to lagged book equity ROC Cash productivity

OPA Operating profits to book assets ROE Return on equity

OPE Operating profits to book equity ROEQ Quarterly return on equity

OQ Quarterly Ohlson O-score ROIC Return on invested capital

PCM Sales minus costs of goods sold to sales SAT Sales to total assets

PM Profit margin SATIA Industry-adjusted sales to total assets

PMIA Industry-adjusted profit margin TBI Taxable income to book income

PMQ Quarterly profit margin TBIQ Quarterly taxable income to book income

PROF Gross profitability to book equity Z Altman Z-score

RNA Return on net operating assets ZQ Quarterly Altman Z-score

Panel E: Intangibles (92)

ACQ Accrual quality DIS Dispersion in analyst earnings forecasts

ADM Advertising expense to market equity DIVI Dividend initiation

AGE Firm age DIVO Dividend omission

ALA Liquidity of book assets DLD Growth in long-term debt

ALAQ Quarterly liquidity of book assets DLG Dispersion in analyst long-term growth

forecasts

ALM Liquidity of market assets DLS Disparity between long- and short-term

earnings growth forecasts

ALMQ Quarterly liquidity of market assets DQUICK Percent change in quick ratio

ANA Analyst coverage DSA Percent change in sales minus percent

change in accounts receivable

AOA Absolute value of operating accruals DSI Percent change in sales minus percent

change in inventories

AOP Analyst optimism DSIV Percent change in sales to inventories

BCA Brand capital to book assets DSS Percent change in sales minus percent

change in SG&A

CAL Current ratio ECS Earnings conservatism

CDIND Convertible debt indicator EPER Earnings persistence

CTA Cash to assets EPRD Earnings predictability

DAC Discretionary accruals ESM Earnings smoothness

DANA Change in analyst coverage ETL Earnings timeliness

DCAL Percent change in current ratio ETR Effective tax rate
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Table : Firm characteristics (continued)

(1)

Abbrev.

(2)

Characteristic

(3)

Abbrev.

(4)

Characteristic

DGS Percent change in gross margin minus EVR Value relevance of earnings

percent change in sales

FRA Pension plan funding to book assets RA610 Years 6-10 lagged returns, annual

FRM Pension plan funding to market equity RCA R&D capital to book asset

GAD Growth in advertising expense RDIND R&D increase

GIND Corporate governance RDM R&D expense to market equity

HA Industry concentration in total assets RDMQ Quarterly R&D expense to market equity

HE Industry concentration in book equity RDS R&D expense to sales

HN Hiring rate RDSQ Quarterly R&D expense to sales

HNIA Industry-adjusted hiring rate RER Real estate ratio

HS Industry concentration in sales RN1 Year 1 lagged return, nonannual

KZ Kaplan-Zingales index of financing constraints RN1115 Years 11-15 lagged returns, nonannual

KZQ Quarterly Kaplan-Zingales index of financing RN1620 Years 16-20 lagged returns, nonannual

constraints

LBP Leverage component of book to price RN25 Years 2-5 lagged returns, nonannual

LFE Labor force efficiency RN610 Years 6-10 lagged returns, nonannual

OA Operating accruals SA SA index of financing constraints

OB Order backlog SC Sales to cash

OCA Organizational capital to book assets SDD Secured debt to total debt

OCAIA Industry-adjusted organizational capital to SDIND Secured debt indicator

book assets

OL Operating leverage SIN Sin stocks

OLQ Quarterly operating leverage SIV Sales to inventories

PAFE Predicted analyst forecast error SR Sales to receivables

PDA Percent discretionary accruals TA Total accruals

POA Percent operating accruals TAN Tangibility of assets

PTA Percent total accruals TANQ Quarterly tangibility of assets

QUCIK Quick ratio VCF Cash flow volatility

RA1 Year 1 lagged return, annual VOA Accrual volatility

RA1115 Years 11-15 lagged returns, annual VROA Earnings volatility

RA1620 Years 16-20 lagged returns, annual WW Whited-Wu index of financing constraints

RA25 Years 2-5 lagged returns, annual WWQ Quarterly Whited-Wu index of financing

constraints

Panel F: Trading frictions (57)

AMI Absolute return to volume BETADAILY CAPM beta using daily returns

AT Total assets BETADOWN Downside beta

ATQ Quarterly total assets BETAEW CAPM beta using daily returns and

equal-weighted market excess return

12



Table : Firm characteristics (continued)

(1)

Abbrev.

(2)

Characteristic

(3)

Abbrev.

(4)

Characteristic

BETAC CAPM beta BETAEWSQ CAPM beta squared

BETAD Dimson beta BETAFF Fama-French 3-factor beta

BETAFP Frazzini-Pedersen beta IVCA Idiosyncratic volatility from the

CAPM

BETAHS Hong-Sraer beta IVEW Idiosyncratic volatility using equal-

weighted market excess return

BETALCC Acharya-Pedersen liquidity beta, IVFF Idiosyncratic volatility from the

illiquidity-illiquidity Fama-French 3-factor model

BETALCR Acharya-Pedersen liquidity beta, IVQ Idiosyncratic volatility from the

illiquidity-return q-factor model

BETALEV Financial intermediary leverage beta LM1 Turnover-adjusted number of zero daily

trading volume

BETALRC Acharya-Pedersen liquidity beta, LM12 Prior 12-month turnover-adjusted number

return-illiquidity of zero daily trading volume

BETALSY Liu-Stambaugh-Yuan beta LM7 Prior 6-month turnover-adjusted number

of zero daily trading volume

BETANET Acharya-Pedersen net liquidity beta MDR Maximum daily return

BETAPS PÃ¡stor-Stambaugh liquidity beta ME Market equity

BETARET Acharya-Pedersen liquidity beta, MEIA Industry-adjusted market equity

return-return

CS1 Coskewness, 1 month PIN Probability of information-based trading

CS60 Coskewness, 60 months PPS Price per share

CVD Coefficient of variation of dollar trading volume SBA Bid-ask spread

CVT Coefficient of variation of share turnover SHL High-low bid-ask spread

D1 Price delay based on R2 SUV Standardized unexplained volume

D2 Price delay based on slopes SV Systematic volatility risk

D3 Price delay based on adjusted slopes TAIL Tail risk

DTO Detrended turnover minus market TS Total skewness

turnover

DTV Dollar trading volume TUR Share turnover

HIGH52 52-week high price TV Total volatility

ISC Idiosyncratic skewness from the CAPM VDTV Volatility of dollar trading volume

ISFF Idiosyncratic skewness from the VEA Abnormal earnings announcement volume

Fama-French 3-factor model

ISQ Idiosyncratic skewness from the VT Volume trend

q-factor model VTUR Turnover volatility
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Section OC. Details of the Machine Learning Models

In this section, I briefly describe the basic principles and strengths of machine learning models con-

sidered in my paper. More details of models can be found from Hastie et al. [2009] and Goodfellow

et al. [2016].

A. Dimension reduction models

The principal component analysis (PCA) is to maximize the common variation across all the char-

acteristics and its first K principal components represent the strongest variables that explain the

variations of the P characteristics. The partial least square (PLS) approach extracts some stock

characteristics from all stock characteristics according to its covariance with future stock returns

and chooses a linear combination of the stock characteristics that is optimal for forecasting. While

the PCA model maximally represents the total variations of predictors, it ignores the forecasting

target and therefore, is an unsupervised learning technique for dimension reduction. In contrast,

the scaled PCA (SPCA) is designed to use the target information to guide dimension reduction. A

characteristic with strong forecasting power receives a larger weight, whereas a characteristic with

weak forecasting power receives a smaller weight.

B. Penalized linear regressions

The penalized linear model is a generalization of the OLS linear regression model. When there is

a large number of predictors, the OLS tends to have good in-sample performance (small bias in

the terms of machine learning) and bad out-of-sample performance (large variation in the terms of

machine learning). Furthermore, the OLS can generate significant loadings on a large number of

independent variables, making the interpretation of the model difficult. One class of models, the

shrinkage models, generalize the OLS by imposing a penalty on the number and size of non-zero

coefficients in the estimation, effectively limiting the model to focus on a subset of the independent

variables and achieving dimension reduction.

The Elastic-Net model, introduced by Zou and Hastie [2005], is a shrinkage model in which the

penalty function is a linear combination of L1 and L2 norms of the coefficients. The Elastic-Net

model is also a generalization of the well-known LASSO and Ridge regression models. In general,

the LASSO model tends to select a few strong predictors while setting the coefficients of other

predictors to essentially zero, but can make random choices among several strong and correlated
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variables. The Ridge model usually includes more predictors and shrink the coefficients of correlated

variables together. The Elastic-Net model strikes a balance between these characteristics, allowing

both a selection of strong features and the averaging of correlated features.

C. Regression trees

Regression trees can approximate any a priori unknown function while keeping the interpretation

from a recursive binary tree. However, with more than two inputs, the interpretation is less obvious

as trees. Finding the optimal partition by using a least squares procedure is generally infeasible,

however. I thus follow Friedman et al. [2001] and implement a gradient boosting procedure. Gra-

dient boosting in a tree context boils down to combining several weak trees of shallow depth.

Boosting is a technique for reducing the variance of the model estimates and increasing preci-

sion. However, trees are “grown” in an adaptive way to reduce the bias, and thus are not identically

distributed. An alternative procedure would be to build a set of de-correlated trees which are es-

timated separately and then averaged out. Such modeling framework is known in the machine

learning literature as “Random Forests” (see Bushee [2001]). It is a substantial modification of

bagging (or bootstrap aggregation) whereby the outcome of independently drawn processes is av-

eraged to reduce the variance estimates. Bagging implies that the regression trees are identically

distributed – that is the variance of the average estimates, as the number of simulated trees in-

creases, depends on the variance of each tree times the correlation among the trees. Random

forests aim to minimize the variance of the average estimate by minimizing the correlation among

the simulated regression trees.

I also consider an extended version of the random forest procedure which is called “Extremely

Randomized Trees” (Geurts et al. [2006]). While similar to ordinary random forests, in that they

still represent an ensemble of individual trees, extreme trees have two main distinguishing features:

first, each tree is trained using the whole training sample (rather than a bootstrap sample); and

second, the top-down splitting in the tree learner is randomized. That means that instead of

computing the optimal cut-point locally for each input variable under consideration, a random

cut-point is selected. In other words, with extreme trees the split of the trees is stochastic; with

random forests the split is instead deterministic.

Tree-based methods such as Gradient Boosted Regression Trees or Random Forests are essen-

tially modifications of a universal underlying algorithm utilized for the estimation of regression

trees, commonly, that is the Classification and Regression Tree (CART) algorithm (Breiman et al.

15



[1984]). Random Forests consist of trees populated following an algorithm like CART, but ran-

domly select a sub-set of predictors from the original data. In this manner, the individual trees in

the forest are de-correlated and overall predictive performance relative to a single tree is increased.

The hyperparameters to be determined by cross-validation include first and foremost the number

of trees in the forest, the depth of the individual trees and the size of the randomly selected sub-set

of predictors. Generally, larger forests tend to produce better forecasts in terms of predictive accu-

racy. GBRTs are based on the idea of combining the forecasts of several weak learners. The GBRT

comprises of trees of shallow depth that produce weak predictions stand-alone, however, tend to

deliver powerful forecasts when aggregated adequately.

D. Neural networks

The neural networks models, initial motivated by the neuron structures in the brains of humans and

animals, blossomed after breakthroughs in algorithms and computing power (LeCun et al. [2015].

Neural networks models, also called deep learning models, have become some of the most powerful

models and achieved near- or super-human capabilities in a wide variety of applications, such as

natural language processing, speech recognition, computer vision, game playing, and autonomous

driving.

There are many different architectures of neural networks, such as the simplest Feed-forward

Neural Networks for straightforward classification tasks, the Convolutional Neural Networks for

image and pattern recognition, and Recurrent Neural Networks (RNN) that can process sequential

data such as speech and text. Long-Short Term Memory (LSTM) Neural Networks are a special

type of RNN that is the key to the many successes of RNN, including speech recognition, language

modeling, and translation.

In a neural network, there are nodes (neurons) that are connected to each other. There are

three types of nodes: input nodes that are used to receive data; output nodes that produce desired

outcomes or predictions; and intermediate nodes that process the data from input nodes and convert

them to outputs. The connections of the nodes determine the structure of the neural network and

its features. RNNs are neural networks with loops, or nodes that are connected to themselves.

LSTM networks are introduced by Hochreiter and Schmidhuber [1997] to solve the problem

that standard RNNs have trouble retaining “memory” of the much earlier parts of sequential input

data, when processing the later parts of the data. Since sequential data may have long-term

dependencies, i.e., parts far away in the sequence may be related, it is important to have “long-
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term memory” to handle them. LSTM networks have a sequence of nodes that are specifically

designed to retain long-term information and update it continuously with new information in a

flexible way. As a result, LSTM can capture both short-term and long-term relations in sequential

or time-series data very well, suggesting its potential applications in financial economics given the

abundance of time-series financial data.

17


	Introduction
	Related Literature
	Data and Variables
	Empirical Performance of Machine Learning Models
	Evaluating the Out-of-sample Performance of Machine Learning Models
	Diebold and Mariano (1995) Test
	Machine Learning Portfolios Constructed Using 310 Stock Characteristics

	Empirical Results
	Univariate portfolio-level analysis
	Testing the mispricing hypothesis
	Average portfolio characteristics
	Bivariate portfolio-level analysis
	Fama-MacBeth cross-sectional regressions 
	Robustness Check

	Sources of return predictability
	Informational frictions
	Investors’ limited attention
	Limits to arbitrage

	Risk versus mispricing explanation
	Earnings prediction
	Portfolio returns during earnings vs. non-earnings announcement periods
	Testing potential risk-based explanations

	Conclusion

