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ABSTRACT

We examine how relative performance evaluation (RPE) affects industry competition—a
question relevant for corporate boards interested in incentivizing executives. Using U.S.
airline data, we estimate a dynamic game of competition with heterogenous firms in an
oligopolistic market with RPE contracts. RPE naturally makes CEO compensation less
sensitive to market demand. However, because RPE amplifies a firm’s cost efficiency relative
to its peers, RPE does not always induce aggressive product market competition, often
weakening competition from inefficient firms. While RPE induces endogenous selection of
efficient firms into large, high entry-cost markets, and vice versa, RPE has little effect in
uncompetitive markets.
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1. Introduction

Relative performance evaluation (RPE) is the use of peer performance to set individual

compensation. It efficiently incentivizes CEO effort because comparisons between competing

CEOs filter out common shocks and thus extract information about individual effort (Holm-

ström 1979, 1982). While RPE reduces CEOs’ exposure to economy-wide events, it can induce

them to take actions that hurt peer performance because they receive higher compensation

if industry peers perform worse (Aggarwal and Samwick 1999). Yet this intuitive relation

between RPE and competition has received scarce empirical attention (e.g., Aggarwal and

Samwick 1999; Vrettos 2013). This lack of evidence is puzzling given the secular decline in

the competitiveness of many U.S. industries (Grullon, Larkin, and Michaely 2019) and given

policy makers’ natural interest in factors that either inhibit or enhance competition.

In this paper, we quantify the strategic implications of the incentives induced by RPE in

executive compensation contracts, focusing on the effects of RPE provisions on market entry

and exit. This question is challenging. Board compensation decisions are endogenous, thus

generating endogenous patterns in firm actions. There are no obvious instruments. Moreover,

RPE is likely difficult to measure (Edmans, Gabaix, and Jenter 2017).

Therefore, we study the interaction between RPE and competition in a new way by

estimating a dynamic game of competition in an oligopoly market where CEOs of heteroge-

neous firms, under given contracts, make entry–exit decisions in heterogeneous markets to

maximize their utility. Using data on airline routes and CEO compensation, we infer the

use of RPE and its impact on strategic interactions by viewing observed market entry–exit

decisions and CEO compensation through the lens of the model. This approach allows us

to identify competitive effects by modeling any strategic interactions explicitly and then

imposing this structure on the data. Moreover, the theoretical framework allows us to conduct

counterfactual experiments that provide quantitative conclusions regarding the effects of RPE

on strategic interactions.
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Our main message is that RPE does not always induce overly aggressive product market

strategies. First proposed by Aggarwal and Samwick (1999), this idea that RPE intensifies

competition has dominated the thinking on RPE. Instead, we extend the framework of

Aggarwal and Samwick (1999) by allowing for heterogeneous competitors. We show that RPE

also makes competition depend heavily on firm and and market characteristics such as firm

efficiency, market entry costs, and market size. Our empirical and quantitative analyses show

that these attributes matter at least as much for CEO competitive actions as the risk-lowering

properties of RPE contracts, with the result that RPE produces heterogeneous effects on

competition. This general principle manifests itself in three ways.

First, RPE encourages the selection of different firms into markets of different sizes. RPE

has little effect on efficient firms with low fixed costs, as the likelihood they operate in a

market is already high without RPE. In contrast, RPE implies that less efficient firms shy

away from all markets to avoid comparisons with their more efficient peers, with this effect

being more pronounced in large markets.

Second, even in a world without RPE contracts, markets with high entry costs are more

likely to contain efficient firms with low fixed costs, and markets with low entry costs are more

likely to contain inefficient firms with high fixed costs (Asplund and Nocke 2006). Intuitively,

RPE naturally amplifies the competitive advantage of firms with low fixed costs, as their

peer groups contain firms with heterogeneous fixed costs. The converse naturally holds for

firms with high fixed costs, so there is more endogenous selection of firms into high- and

low-entry-cost markets. These two findings imply that efficient firms are more aggressive

in entering high-demand markets with high fixed entry costs, leaving less efficient firms to

compete in low-demand markets with lower entry costs. For example, we estimate that

Southwest has high fixed operating costs, and its well-known strategy of entering smaller

markets like Providence or Baltimore is a clear example of this selection effect.

Third, we find that RPE has little effect on entry–exit decisions when markets exhibit

two features that inhibit competition: high entry costs and small effects of new entrants on
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the revenues of incumbents. High entry costs mechanically make entry–exit decisions depend

less heavily on nearly any aspect of the firm’s environment, including RPE. The effect of

competition is more subtle. If new entrants do not siphon off much revenue from competitors,

and the number of possible players is finite, then firms have high variable revenues. In this

case, differences in fixed costs across competitors induce little variation in profits, so RPE

has a small effect.

To deepen the intuition behind these results, we elaborate on the model, which is a

parsimonious dynamic game of competition with heterogenous firms in an oligopoly market,

based on Aguirregabiria and Mira (2010). All firms have identical technologies, except along

the dimension of fixed operating costs, and all CEOs are given the same contracts that contain

RPE provisions. They maximize the expected present value of their utility by deciding each

period whether to enter or exit specific markets in the economy, which are characterized by

different levels of demand and entry costs. The firms make these decisions while taking as

given their expectations about competitor actions. Although these firms make simultaneous

moves, each CEO’s market entry–exit decisions are forward looking. These decisions in turn

affect other firms’ profits through their effect on equilibrium variable profits.

Several features of the model directly influence the interaction between RPE and compe-

tition. First, RPE makes CEO compensation less sensitive to market demand, mitigating

managers’ punishment in bad times, but also dampening rewards in good times. Second,

firms are heterogeneous in the dimension of their fixed operating costs, so RPE makes CEO

compensation depend heavily on the firm’s cost advantage relative to its peers. Third, RPE

means that one firm’s entry lowers other managers’ compensation, as competitors’ profits fall.

These three features imply that managers under RPE contracts make entry–exit decisions

that differ sharply from those made by managers unaffected by RPE. Most importantly, the

effects of RPE on competition hinge on cost heterogeneity across competitors. Managers with

high operating costs always lose when compared with competing peers. As such, they are

reluctant to enter a market, especially under high demand. Although they are not punished
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for the common component of their bad performance, and although their entry lowers their

competitors’ profits, our estimates show that their relative cost disadvantage dominates and

thus reduces their propensity to enter. Conversely, for firms with low fixed operating costs,

although RPE implies they benefit little from high demand, they benefit more from being

compared to peers with heterogeneous fixed costs, so they are motivated to operate, especially

in high-demand markets where profit opportunities are by definition more abundant.

At first glance, studying the interaction between competition and RPE appears puzzling,

when evidence on the mere existence of RPE appears weak, with most studies finding little

relation between CEO compensation and other firm performance (Edmans et al. 2017).

Moreover, Jenter and Kanaan (2015) find that CEOs are fired after bad firm performance

caused by factors beyond their control. This evidence clearly contradicts the hypothesis that

boards filter out common shocks.

However, Albuquerque (2009) and Jayaraman, Milbourn, Peters, and Seo (2018) show

that careful classification of the peer group leads to a significant negative correlation between

compensation and peer performance. In addition, studies that postdate the 2006 Security

and Exchange Commsion (SEC) executive compensation disclosure rules find direct evidence

of RPE, with RPE provisions in 25% to over 80% of contracts (Gong, Li, and Shin 2011;

De Angelis and Grinstein 2019). The implicit use of RPE may be even higher, as mandatory

disclosures of RPE may omit any implicit use. For example, firms occasionally comment

favorably on the principle of RPE as part of their compensation philosophies without disclosing

any details (Gong et al. 2011). Similarly, while all the U.K. directors interviewed in Ferri

(2009) claim to consider peer performance in the design of executive pay, only 42% of the

FTSE 350 firms explicitly disclose the use of RPE in performance-vested equity grants (Carter,

Ittner, and Zechman 2009).

Much of the extant empirical work on the relation between competition and RPE focuses

on the association between measures of competitiveness and the sensitivity of compensation to

other-firm performance. For example, Aggarwal and Samwick (1999) examine the theoretical
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optimality of RPE under Bertrand and Cournot competition. They note that incentives to

stifle competition in competitive industries can lead to a positive relation between compen-

sation and peer performance. Using data on U.S. industries, they find that the correlation

between compensation and rival firm performance is positive and increases with the level

of industry competitiveness, as measured by the usual Herfindahl index. Vrettos (2013)

argues that the relation between compensation and peer performance is negative when firms

compete as strategic substitutes but positive when they compete as strategic complements.

He additionally argues that network and regional U.S. airlines compete in strategic substitutes

within their respective groups, but they compete as strategic complements between the two

groups. Within each group, he finds evidence of a negative association between compensation

and peer performance; across groups, he finds a positive association. In contrast to these

papers, Bloomfield, Marvão, and Spagnolo (2020) find that firms participating in illegal

cartels decrease their use of RPE after cartels are discovered, suggesting that these firms only

use RPE when the potential for competition is low.

We build on this evidence by showing how RPE shapes a specific competitive action:

entry–exit decisions. This focus is preferable to reliance on a noisy measure of competition,

such as a Herfindahl index. We also expand the conceptual framework used in previous

work by allowing for both heterogeneous markets and heterogeneous competitors, both of

which are likely featured in many markets, not just the airline industry that we study. We

show that the effect of RPE on competition and profits hinges strongly on the dimensions of

heterogeneity that we study: individual airline efficiency, market demand, and market entry

costs. This type of evidence is useful for theories of optimal RPE, as it provides guidance as

to the firm and market characteristics that matter for competitive actions under RPE.

2. Model

In this section, we present a parsimonious dynamic game of competition with heterogenous

airlines in an oligopoly market. The players are the airline CEOs, who, under given contracts,
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make entry–exit decisions to maximize the expected present value of their utilities. These

decisions are forward looking and thus incorporate the implications of any decision on future

profits and future competitor reactions.

2.1 Competition

The industry is characterized by N airlines and M markets. A market is defined as a non-

directional city-pair; that is, if an airline operates flights from city A to city B, then it operates

return flights as well. This definition is useful for two reasons. First, potential entrants are

observable. Second, treating routes as markets and characterizing market competition at the

route level allows us to capture heterogeneity across different routes.

At each time t, airline i in market m earns profits, πimt, which depend on two state

variables and one choice variable. The two state variables, market size and airline incumbency

status, are common knowledge among all airlines. Incumbency status, ximt ∈ {0, 1}, is an

endogenous state variable, with ximt = 1 indicating an incumbent airline that currently

operates in market m at time t, and ximt = 0 indicating a potential entrant. We assume that

the size of market m at time t, smt, is exogenous and evolves according to a Markov process.

In what follows, we refer to smt as either market size, market demand, or market conditions.

The first component of airline profits are the variable profits that accrue from operating

in a market. Specifically, if airline i operates in market m at time t, i.e., ximt = 1, it competes

with other incumbent airlines and earns equilibrium variable profits ymt that are determined

by market size and the number of incumbents in market m at time t, as follows:

ymt(smt,xmt) = γssmt − γn ln(nmt), where nmt(xmt) =
N∑
j=1

xjmt. (1)

In equation (1), the vector xmt = {ximt : i = 1, 2, . . . , N} summarizes the incumbency status

of the N airlines, with the number of incumbents denoted as nmt. Note that all airlines

operating in a market earn the same variable profits, which are strictly decreasing in the
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number of competitors. The two terms in the revenue function (1) represent the impact of

market size and competition, respectively. We interpret market size as reflecting demand.

The sensitivity of revenue to market size is captured by the parameter γs > 0. The impact of

competition is captured by the parameter γn, with a large γn leading to more intense strategic

interaction, as in this case, any single market entrant has a large impact on industry revenue.

Note that in the model, the intensity of competition is characterized by the number of airlines

present in the market. This general feature of our model is shared by Aguirregabiria and

Mira (2007), who show that it can arise from static Cournot competition with linear demand.

While their functional form is different from the second term in equation (1), our functional

form is simpler, and both share the notion that competition depends only on the number of

competitors. A computationally more intensive alternative is in Aguirregabiria and Ho (2012),

who model variable profits as the outcome of equilibrium price competition and estimate

the resulting demand system using a nested logit model. We opt for our simpler approach

because it provides us with the tractability to focus on the effects of compensation contracts

on the dynamics of competition.

The incumbent airline i also pays fixed operating costs, fim, that are airline- and market-

specific. These costs capture time invariant airline heterogeneity across markets.

Finally, profits depend on the entry decision. Airline i can decide whether to operate,

either as an incumbent or an entrant, in the market at time t + 1. The decision whether

to enter or exit market m next period is denoted by aimt, which equals one if the airline

operates in the market, and zero otherwise. By definition, xim,t+1 = aimt, that is, we use

different notation to distinguish state and choice variables. This timing also implies that a

new entrant is not active until the next period.

Once airline i decides to enter, it has to pay an entry cost, km, that is market-specific, but

homogeneous across airlines and time. Following Aguirregabiria and Ho (2012), we assume

that one year is needed to build up the inputs required for operating in a market, so the

entry cost is paid at t, but entry–exit decisions are not effective until t + 1. Equivalently,
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the entry cost, km, is paid in period t only when the airline transitions from being inactive

in period t to being active in period t+ 1, that is, if ximt = 0 and aimt = 1. In contrast, an

exiting airline that is operative during time t incurs no exit costs. Although barriers to exit

are likely high in the airline industry as a whole, this assumption about costless exit refers to

one route, not the entire business.

On the other hand, if airline i stays out of a market m at time t, i.e., ximt = 0, it gets zero

profits. If airline i does not operate in market m, it is not prohibited from operating in any

of the other M markets. In equilibrium, the profits of airline i are equal to the value of its

best outside option. However, because this outside option is airline- and market-specific, it

cannot be identified separately from the average fixed cost, fim. Therefore, we normalize the

outside option to zero following, for example, Aguirregabiria and Mira (2007). As such, the

fixed cost, fim, should be interpreted as net of the opportunity cost of operating elsewhere.

These assumptions imply the following expressions for airline profits, which we denote

formally as πimt(xmt, smt, aimt).

πimt(xmt, smt, aimt) =


ximt (ymt − fi)− (1− ximt)km if aimt = 1,

ximt (ymt − fi) if aimt = 0.

(2)

Equation (2) summarizes all four incumbency–action pairs: incumbent who stays, incumbent

who exits, potential entrant who remains out of the market, and potential entrant who enters.

The interaction between the terms ximt and (ymt − fim) captures the notion that only active

firms earn profits. The presence of the fixed cost term, (1 − ximt)km, only in the case of

aimt = 1 indicates that only inactive firms that enter pay the entry cost.

2.2 Manager’s Compensation and Utility

An airline CEO receives an exogenously specified representative compensation contract.

We do not derive the form of an optimal contract but instead approximate observed contracts,

so the representative contract is inferred from data, and we do not take a stand on whether
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the contract is optimal or not. We view this assumption as sensible for two reasons. First,

(Dittmann and Maug 2007) find that observed contracts do not approximate theoretical

optimal contracts. Second, and alternatively, observed contracts in the data might very well

be optimal, given incentives and constraints that are unobservable to outsiders.1

The contract consists of two parts: a profit share and RPE, so the CEO is rewarded

on the basis of absolute performance and peer performance. Formally, let xt = {ximt :

i = 1, 2, . . . , N ;m = 1, 2, . . . ,M}, at = {aimt : m = 1, 2, . . . ,M ;n = 1, 2, . . . , N}, and

st = {simt : i = 1, 2, . . . , N ;m = 1, 2, . . . ,M}. Then we can express the CEO compensation

contract at time t as a function of (xt, st,at) as follows:

cit(xt, st,at) = λoπit − λpπ−it, (3)

where πit represents profits of airline i at time t, aggregated over markets, i.e., πit =
∑M

m=1 πimt.

Peer performance of airline i at time t is denoted by π−it, which is the average profits of all

airlines other than i:

π−it =
1

N − 1

∑
j 6=i

πjt. (4)

In equation (3), λo > 0 and λp ≥ 0 are parameters representing the contract loadings on

an airline’s own and peer performance respectively, so the contract indicates that the CEO

utility of airline i increases with that airline’s own performance but decreases with peer

performance.

Finally, CEO utility depends on information revealed to airline i about market m before

the CEO makes an entry–exit decision. Let εimt denote this information for a single market-

CEO-time triplet. This information is choice-specific and is an independent and identically

distributed (i.i.d.) extreme value type-I random variable, with zero mean and unit dispersion.

We denote the associated transition probability as G(εimt). This distributional assumption

1Glover and Levine (2015), Glover and Levine (2017), and Nikolov and Whited (2014) also fit data to
models with possibly suboptimal contracts.
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is standard in dynamic discrete choice frameworks.2 Next, letting εit ≡
∑M

m=1 εimt be the

private information aggregated over markets, CEO utility is given by:

uit(xt, st,at, εit) = cit(xt, st,at) + εit. (5)

2.3 Optimization and Equilibrium

The timeline of events is as follows. At time t, airlines are characterized by their own

incumbency status in market m. After the realization of the demand shock smt, which is

common knowledge among all airlines, and the private shock εimt, which is both airline- and

market-specific, airlines earn variable profits and pay operating costs depending on their

incumbency status. CEOs then decide simultaneously whether to operate in the market at

time t+ 1, taking as given their expectations about peer actions.

The entry and exit decisions are dynamic, that is, they depend on expectations about

future competition. Upon entry, however, equation (1) implies that competition is static.

We justify this assumption given the argument in Aguirregabiria and Ho (2012) that pricing

of tickets is short-run and at the level of individual flights. We capture these effects in a

reduced-form way in the second term of equation (1).

After signing the contract, the CEO chooses a set of market entry–exit decisions ait =

{aimt : m = 1, 2, . . . ,M}. We assume that CEOs’ strategies depend only on payoff-relevant

state variables, that is, we assume a Markov perfect equilibrium. To describe this equilibrium,

let an airline’s payoff-relevant information at time t be {xt, st, εit}, with εit = {εimt : m =

1, 2, . . . ,M}. Let σ = {σi(xt, st, εit) : i = 1, 2, . . . , N} be a vector of strategy functions, one

for each airline. A Markov perfect equilibrium (MPE) in this game is a vector of strategy

functions σ such that each airline’s strategy maximizes the expected present value of the

2Permitting serial correlation in the privately observed shock would give rise to models of learning in which
players form beliefs about other players’ states based on past actions. To model these beliefs consistently,
the state space would need to be amplified to include the set of all possible past actions. As such, serial
correlation is likely to render the method computationally infeasible. See, for example, Pesendorfer and
Schmidt-Dengler (2008), for a detailed discussion.
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utility of the airline’s manager for each possible state (xt, st, εit), taking as given other airlines’

strategies.

We can express the decision problem of player i as a standard single-agent dynamic

programming problem as in Rust (1994). Letting the superscript σ indicate dependence on

all players’ strategy functions, the Bellman equation for an individual CEO is:

Ũσit (xt, st, εit) = max
ait

{
uσit(xt, st,ait, εit) +

1

1 + r
E
[
Ũσi,t+1(xt+1, st+1, εi,t+1)

∣∣∣ xt, st,ait, εit

]}
,

(6)

where uσit(xt, st,ait, εit) denotes player i’s current utility if it chooses ait and the other players

behave according to their respective strategies in σ. Similarly, Ũσit (xt, st, εit) denotes the

value for player i when it behaves optimally now and in the future, given that the other

players follow their strategies in σ.

It is extremely challenging to solve and estimate the dynamic game of competition

described above. This intractability arises because the equilibrium of this dynamic game of

competition, an MPE, is based on information covering the space of all state variables (xt, st).

For example, the dimension of the space xt, is 2NM , as it contains all possible combinations

of binary entry–exit decisions for all airlines in all markets. Given the number of markets and

airlines in our empirical analysis, solving a dynamic game with this state space is not feasible.

To deal with this computational complexity, we follow Aguirregabiria and Ho (2012) and

reduce the dimension of the state space by assuming that an airline’s entry–exit decisions

are decentralized to local managers. That is, every airline has M local managers, one for

each market. While we assume that the local managers and the CEO have perfectly aligned

interests, we also assume that each local manager solves her own decision problem irrespective

of the other managers. Each local manager, indexed by (i,m), chooses aimt ∈ (0, 1) to

maximize the expected present value of her future utility. Thus, the optimization problem in

(3) and (6) can be rewritten as:
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Ũσimt(xmt, smt, εimt) = max
aimt

{
uσimt(xmt, smt, aimt, εimt) (7)

+
1

1 + r
E
[
Ũσim,t+1(xm,t+1, sm,t+1, εim,t+1)

∣∣∣ xmt, smt, aimt, εimt

]}
,

in which the one-period utility of the local manager (i,m) is given by:

uimt = λoπimt − λpximtπ−imt + εimt (8)

≡ cimt + εimt. (9)

Here, xmt and smt are defined analogously as xt and st.

In equation (8), peer performance is defined as in equation (3), except at the market level.

Note that at the market level, RPE enters the utility of a local manager under two conditions.

First, only local managers of incumbent airlines (ximt = 1) get evaluated relative to their

peers. Second, the market must have at least one incumbent airline other than i, i.e., nmt > 1.

Thus, the state space of the optimization problem of a local manager is reduced to 2N .

Because the private shocks, εimt, are assumed to be additive and i.i.d. over players and over

time, we can define value functions integrated over private information as Uσimt(xmt, smt) =∫
Ũσimt(xmt, smt, εimt)dG(εimt) and re-express the Bellman equation as:

Uσimt(xmt, smt) =

∫
max
aimt

{vσimt(xmt, smt, aimt) + εimt}dG(εimt), (10)

with

vσimt(xmt, smt, aimt) = cσimt(xmt, smt, aimt)+
1

1 + r
E[Ũσim,t+1(xm,t+1, sm,t+1, εim,t+1)|xmt, smt, aimt].

Next, after converting the dynamic game into a standard single-agent dynamic program-
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ming problem, we can express the best response function of player i in market m, σ∗imt,

as:

σ∗imt(xmt, smt, εimt) = arg max
aimt

{vimt(xmt, smt, aimt) + εimt} .

This best response function gives the optimal strategy of player i if the other players behave

according to their respective strategies in σ∗. The set of optimal strategy function σ∗

characterizes a Markov perfect equilibrium in this game.

Following Milgrom and Weber (1985), the MPE can be described as a fixed point of

a mapping in probability space. Specifically, we can define a set of conditional choice

probabilities (CCPs) associated with this set of optimal strategy functions, σ∗, as p∗ ≡

{p∗it(ait|xt, st)}, such that:

p∗imt(aimt|xmt, smt) =

∫
1{aimt = σ∗imt(xmt, smt, εimt)}dG(εimt),

where 1{·} is the indicator function. The probabilities p∗imt(aimt|xmt, smt) represent the

expected behavior of player i from the point of view of the rest of the players when player i

follows its strategy in σ∗. The value functions vimt(xmt, smt, aimt) depend on other players’

strategies only through other players’ choice probabilities. As such, it is straightforward that

p∗ is a fixed point of p∗ = Ψ(p∗), where Ψ(p) = {Ψimt(aimt|xmt, smt; p−imt)} and

Ψimt(aimt|xmt, smt; p−imt) =

∫
1

(
aimt = arg max

aimt

{
vp

∗

imt(xmt, smt, aimt) + εimt)
})

dG(εimt).

(11)

2.4 Effects of Relative Performance Evaluation

In this subsection, we discuss the two effects generated by the use of RPE. On the one

hand, as noted in the introduction, RPE can be used as an efficient tool to incentivize CEO

effort because comparisons between competing agents can serve as a device to filter out

common shocks and thus extract information about effort. We term this first effect the
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incentive effect. On the other hand, the use of RPE also provides incentives for CEOs to

take actions that influence peer performance, as CEOs receive higher compensation if peers

perform worse. We term this second effect the competition effect.

We illustrate these two effects by substituting the expressions for profit given by equations

(2) and (4) into the compensation contract in equation (8) as follows:

cimt = λo(ymt − fim)− λp
1

nmt − 1

∑
j 6=i

(ymt − fjm). (12)

Because all incumbent airlines earn the same variable profits, ymt(smt,xmt), in market m at

time t but are heterogenous in their fixed operating costs, fim, we can rewrite the compensation

contract in equation (12) as:

cimt = (λo − λp)ymt − (λo − λp)fim + λp(f−im − fim) (13)

The first term reflects the incentive effect discussed in the theoretical literature. The presence

of RPE (λp > 0) reduces the weight on variable profits, ymt, that are outside the manager’s

control, making CEO compensation less sensitive to exogenous market conditions. The second

term demonstrates that RPE exacerbates the effects of fixed costs on firm profits. The third

term demonstrates the effect of competition. The use of RPE adds extra rewards to the local

manager if he has lower fixed operating costs (and thus higher profit margins) than the peer

average. In other words, RPE provides higher incentives to the manager whose fixed costs

of operating in a given market are lower. Of course, the magnitude and sign of the effect

of RPE on CEO utility and competition depends on the relative magnitudes of the various

parameters. We turn to this problem next.

3. Data

Our main source of data is the Airline Origin and Destination Survey (DB1B) of the

U.S. Bureau of Transportation Statistics (BTS). The DB1B survey is a sample of 10% of all
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airline tickets from the large U.S. certified carriers. It contains information on quantities,

prices, and route entry and exit decisions for every airline company operating in the routes

between the 50 largest U.S. metropolitan statistical areas (MSAs). The data set is ideal for

three reasons. First, the detail allows us to treat a route as a market. Second, we are able to

observe the entry–exit decisions for all players in the airline industry. Observations on the

entry–exit decisions at the market level are crucial for us to infer information about strategic

interactions. Finally, by focusing on a single industry, we can conduct the analysis without

considering possible industry misclassifications (see, for example, Jayaraman et al. 2018).

We construct the airline entry and exit data following Ciliberto and Tamer (2009), with

details explained in Appendix A. We define a market as a trip between a pair of MSAs,

irrespective of intermediate stops and of the direction of the flight. This definition is in line

with the previous literature. For example, Ciliberto and Tamer (2009) consider airport-pairs

and Aguirregabiria and Ho (2012) considers city-pairs. We end up with seven airlines in the

final sample: Southwest, American, Delta, United, US Airways, Northwest, and Continental.

We also restrict our sample to the 1993–2008 time period to avoid airline mergers, as our

model does not incorporate these extreme entry–exit decisions. Table 1 in Appendix A

describes the annual number of passengers and the number of operating markets for these

airlines. Southwest is the airline that flies the most passengers (about 2.5 million in the 10%

sample), while American, United, and Delta follow in the ranking. These seven carriers in

total serve 80.49% of passengers and generate 82.14% of revenues in the markets among the

top 50 MSAs.

We collect airline managerial compensation information from ExecuComp and stock

returns from CRSP. Because ExecuComp covers S&P 1500 firms starting only in 1994, we

supplement these data with hand-collected compensation information from SEC filings on

EDGAR.

Finally, as documented in Appendix D, we obtain narrative evidence of the use of RPE

during our sample for all of our airlines, except Southwest and United. United eventually
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started using RPE in 2011, so the possibility of implicit RPE use is likely.

Our final sample consists of two annual-frequency panels from 1993 to 2008: a panel of

managerial compensation and stock returns for seven airlines and a panel of entry–exit data

for 8,575 airline-market pairs: seven airlines times 1,225 markets).

3.1 Descriptive statistics

Figure 1 presents the distribution of the 1,225 markets we examine over our sample period,

twelve of which have never been served by any of the airlines over the years. Approximately

75% of the markets have at least three airlines operating, and one-third of the markets

on average have six incumbent airlines providing service. The average number of airlines

operating per market is 4.69, guaranteeing the existence of comparable peers.3

In Table 2, we report statistics related to market dynamics. In Panel A, we report the

fraction of market-year observations with a specified number of entries or exist. The frequency

of entry and exit per market-year is low, with no entry or exit in over 80% of market-year

observations. Similar to Aguirregabiria and Ho (2012), the average numbers of entries and

exits per market-year are 0.13 and 0.18, respectively. These low frequencies suggest a high

barrier to entry.

At the same time, as seen in Panel B of Table 2 the frequency of entry and exit per

market over the length of the panel is high, where we calculate this statistic by summing

either entries or exits over the panel for each market, and then dividing by the number of

markets. Among the 1,225 markets over the sample period, 82.19% (84.42%) experienced at

least one entry (exit). This large turnover provides us with enough variation to identify the

parameters that quantify fixed operating and entry costs.

Panel C of Table 2 presents statistics describing the considerable heterogeneity in our

sample of airlines. First, we report the number of monopoly markets for each airline over

3Aguirregabiria and Ho (2012) reports the average number of airlines with non-stop flights per market is
only 1.4. We have a much larger number for two reasons. First, we define a market as the trip between a pair
of MSAs, irrespective of intermediate stops or the direction of the flight. Second, we aggregate quarterly data
into yearly data.
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sample period. Delta and US Airways are the largest monopoly carriers, serving 32% and 29%

of the monopoly markets, with on average 12 and 16 monopoly markets per year, respectively.

Southwest, at 14%, is a distant second. Second, we report the average conditional probabilities

of an airline remaining in a market, which we calculate as follows. We discretize market size,

and then form bins defined by size and the number of competitors. For each bin, we count

the number of airline entry–exit decisions, and then average these counts for each airline

over the bins. This measure allows us to capture heterogeneous airline characteristics while

controlling for market size, the level of competition, and the heterogeneity of peers, all of

which are important determinants of survival in a market. Delta, with 87%, has the highest

probability of staying in a market once it has entered, while Continental, with 68%, has the

lowest probability of staying.

4. Estimation

This section describes our approach to estimating the parameters of our model. To reduce

the computational burden, we use a two-step strategy. First, we estimate directly the process

describing the dynamics of market size. Second, we estimate the rest of parameters using a

method of moments estimator, with moments derived using our dynamic game of competition.

For all estimations, the real risk-free interest rate, r, is set to 0.97% (quarterly) to match

the average difference between three-month T-bill rate and the growth rate of the Consumer

Price Index over our sample period.

4.1 Market Size

To estimate the process governing the size of market m, smt, we refine our assumption of

an exogenous Markov process for smt by further assuming that smt follows an AR(1) process

in logs with drift:

ln(sm,t+1) = µ+ ρ ln(smt) + σωm,t+1, (14)
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where µ is the drift, ρ is the autoregressive coefficient, ω is a standard normal i.i.d. innovation

with standard deviation σ. We obtain values of the drift, persistence, and volatility of market

size by directly estimating the regression in (14) using the dynamic panel method in Han

and Phillips (2010) that accounts for fixed effects.

This estimation requires a measure of market size, which is challenging to measure because

of heterogeneity in local economies, airport network structures, and consumer preferences.

However, the number of passengers served provides a useful measure of market size if we

assume that realized demand is an equilibrium outcome of competition. In our own data,

this assumption gives rise to a further problem. Because we only observe a 10% sample, we

occasionally observe no passengers in a market and therefore must conclude that there is

no demand in the market. In these cases, we replace zeros with imputed values from the

following regression:

ln(Passengermt) = β0 + β1 ln(Populationmt) + β2 ln(Income Per Capitamt)

+ β3(Income Growthmt) + β4m + β5t + εmt, (15)

where Passengermt is the number of passengers carried in market m at time t. We include

three demographic variables. Populationmt is the sum of the metropolitan populations of the

route endpoints; Income Per Capitamt is the average of the metropolitan personal income per

capita; and Income Growthmt is the average rate of income growth, which we use to measure

the strength of the local economy. Data on MSA per capita income are from the Regional

Economic Accounts of the Bureau of Economic Analysis. Other measures, such as GDP, are

not reported for all years of our sample. In addition, we include market fixed effects, β4m,

that capture within-market differences such as geographic location that are constant over

time. We also include year fixed effects, β5t, to account for year-specific differences that are

common to all markets, for example, the impact of September 11, 2001.

With the estimates of the parameters of (14) in hand, we then use the method in
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Rouwenhorst (1995) to discretize this AR(1) process into a transition matrix with five points

of support. We choose this method because Galindev and Lkhagvasuren (2010) and Kopecky

and Suen (2010) find that it is more accurate than other alternatives when persistence is

high. Moreover, Kopecky and Suen (2010) show that the Rouwenhorst method produces

highly accurate approximations even when N = 5.

4.2 Estimation of the Dynamic Game

The estimation of the dynamic game is based on a representation of Markov perfect

equilibria as fixed points of a best response mapping in the space of players’ choice probabilities.

We interpret these choice probabilities as players’ beliefs about the behavior of their opponents.

Given these beliefs, each player’s problem can be interpreted as a game against nature with

a unique optimal decision rule (the players’ best response) in probability space.4 The best

response mapping is always a unique function of structural parameters and players’ beliefs

about the behavior of other players.

Model estimation requires that we assume that the data have been generated by only one

Markov perfect equilibrium. In this case, even if the model has multiple equilibria, we do not

need to specify an equilibrium selection mechanism because the equilibrium that has been

selected will be identified from the conditional choice probabilities in the data (Aguirregabiria

and Mira 2007).

4.2.1. Estimator

Because the model implies a probability distribution over the possible outcomes, a natural

starting point would be to use airline entry–exit data to construct a nested maximum-

likelihood algorithm that, in each iteration, would solve the fixed-point problem given the

current estimate of the parameter values. However, this strategy is inapplicable to our model

4We consider only pure-strategy equilibria because of the result in Harsanyi (1973) that they are observa-
tionally equivalent to mixed-strategy equilibria. Harsanyi (1973) shows that a mixed-strategy equilibrium in
a game of complete information can be interpreted as a pure-strategy equilibrium of a game of incomplete
information. That is, the probability distribution of players’ actions is the same under the two equilibria.
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because of the following identification problem. In the utility function (8), the sets of contract-

and profit-related parameters enter multiplied with one another. Thus, a maximum likelihood

estimation that only uses market-level entry–exit data would not contain enough information

to disentangle and therefore separately identify these parameters.

To overcome this identification problem, we use a two-step of moments estimator in

the spirit of Pesendorfer and Schmidt-Dengler (2008). In the first step, computation of a

fixed-point problem delivers the equilibrium choice probabilities for a given set of parameter

values. In the second step, we estimate the parameters by matching the equilibrium choice

probabilities as well as some other auxiliary moments with their data counterparts.5 This

approach allows for identification of the contract-related parameters in the model by allowing

for the incorporation of airline-level compensation data.

Specifically, let θ denote the vector of parameters to be estimated. In the first step, we

solve the following fixed-point problem to obtain the conditional choice probabilities p:

p(θ) = Ψ(p(θ)), (16)

where Ψ is given by (11) and denotes the best response mapping.

In the second step, the parameters of interest are inferred by matching a set of data

moments with an analogous set of model moments. Specifically, we choose our parameter

vector, θ, to minimize the following quadratic form:

θ = arg min
θ
g(θ)′Wg(θ),

where W denotes a positive-definite weight matrix, and g(θ) is the vector of differences

between the model and data moments. We describe the weight matrix in Appendix C.

5Pesendorfer and Schmidt-Dengler (2008) show that structural estimators for dynamic models proposed
by Rust (1994), Hotz and Miller (1993), and Aguirregabiria and Mira (2002) are asymptotic least squares
estimators defined by a set of equilibrium conditions. The estimators differ in the weights they assign to
individual equilibrium conditions.
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4.2.2. Identification

We estimate our set of six parameters θ = (γs, γn, fi, e, λe, λp)
′ by matching two sets of

moments. The first set consists of regression coefficients that we obtain from the airline-level

compensation data. The contract-related parameters, i.e., the loading on CEO compensation

for the firm’s own and peer performance are identified using the airline-level compensation

data. Specifically, we use as moments the coefficients from the following regression:

uit = λ̂1 + λ̂oπit + λ̂pπ−it + eit, (17)

where πit and π−it denote separately the profits (Compustat item NI) of airline i and its peers

−i at time t. In the regression (17), peer performance is measured as the value-weighted

average profits of all airlines other than airline i. We let uit denote CEO compensation (Exe-

cuComp item TDC1), adjusting for the other compensation (ExecuComp item OTHCOMP),

of airline i at time t. We use this adjustment because focusing on total CEO compensation

(ExecuComp item TDC1), an approach used in previous studies, can underestimate the extent

to which total executive pay is correlated with performance. Other compensation received by

the CEO (ExecuComp item OTHCOMP), such as severance payments and signing bonuses,

is largely unrelated to the performance of the firm during the executive’s tenure.

In the airline industry, the leading roles are long-tenured, and CEOs can switch companies

within the industry. For example, there are two cases in which the same person served as CEO

for different airlines during the sample period.6 To this end, we include CEO times airline

fixed effects to control for CEO-airline matches. This procedure gives λ̂o = 1.356 × 10−3,

and λ̂p = −0.196× 10−3. Interestingly, we find reduced-form evidence consistent with the

presence of RPE in our relatively homogeneous set of competitors, as in Albuquerque (2009).

Note that the coefficients λ̂o and λ̂p do not correspond directly to the contract-related

6Stephen M. Wolf served as CEO of United from December 1987 to July 1994 and later as CEO of US
Airways from January 1996 to November 1998. Richard H. Anderson served as CEO of Northwest from April
2001 to October 2004 and as CEO of Delta from September 2007 to May 2016.
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parameters in the model because the airline-level compensation data omits information at

the market level. Thus, the regression in equation (17) is not able to capture a given airline’s

heterogeneity, such as the operating status, across markets. Nevertheless, the regression

coefficients are useful moments with which to identify contract-related parameters, as they

are monotonically related to the underlying contract parameters, λo and λp. In addition,

because we hold these contract-related moments fixed across markets for a given airline and

then solve for profit-related parameters, heterogeneity across competitors is attributed to

profit-related parameters, such fixed operating costs. This approach also is consistent with

our model assumption that local managers are subject to the same contract as the CEO.

Our second set of identifying moments consists of the state-specific entry probabilities

from the market-level entry–exit data. The profit-related parameters are then identified

using the market-level entry–exit data. Before we discuss identification, we outline the

estimation of these probabilities. Recall that the game has a Markov structure, that is, if

{xk, sk} = {xl, sl}, then airline i’s decisions at periods k and l are the same. To calculate the

probability distribution of the Markov structure, we aggregate observations by state for each

player and calculate the sample frequency of airline entry–exit decisions for each state-player

pair. Specifically, let p(ai|x, s) denote the probability that airline i selects entry–exit action

a in state {x, s} for any given market. The sample frequency is calculated as

p̂(ai|x, s) =

∑
t 1(ait = 1,x = xt, s = st)∑

t 1(x = xt, s = st)
.

As a result, the total number of N ×M × 2N sample frequencies are obtained as moments

that are used to match the equilibrium choice probabilities p from the model. The number

N ×M × 2N comes from multiplying the number of players N and the number of states

M × 2N . The number of states is all possible combinations of market size M and the choices

of the players 2N .

The model is identified if there exists a unique set of model primitives that can be inferred
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from a sufficiently rich data set characterizing choice and state transition probabilities. From

a technical standpoint, Magnac and Thesmar (2002) show that in a dynamic discrete choice

framework, utility functions and their associated parameters can be identified for a given set

of values of the discount rate, the distribution function of any unobserved private information,

ε, and the agent’s outside option. Our specification satisfies these identification conditions.

Both the discount rate β and the distribution of ε are specified outside of the model estimation,

and the expected value of the outside option if the firm is not active is normalized to zero.

From an intuitive standpoint, given all the state-specific entry probabilities as the moments,

we use variation in the choice probability across players and states to identify separately the

profit-related parameters for each CEO contract. The revenue-related parameters, γs and

γn, are identified through variation in choice probabilities in response to the market size and

the number of incumbents. The vector of airline-specific fixed operating costs f is identified

through variation in the probability of being active by incumbents. The entry cost, k, is

identified from the differences in the probability of being active between incumbents and

potential entrants.

4.3 Market Heterogeneity

Note that our model characterizes the dynamic game in a single market, yet our data

consist of 1,225 heterogeneous markets. To address this tension between our simulated data

and our actual data, we consider two approaches.

Our first approach involves estimating the dynamic game using data pooled across

markets, implying that we calculate empirical choice probabilities as if the entire data set

comprises a single market. As such, we assume that the observed state-action profiles are

generated from an identical data-generating process in all markets. More importantly, we

assume a single and identical equilibrium of the game is played across all markets. This

pooling affects the estimation of the parameters that are identified by traditional regression

coefficients. In particular, heterogeneity stems from a specific property of the decentralized
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optimization problem in Section 2, which keeps the key features of the original optimization

problem but adds a restriction that requires that decisions of local market managers are

made independently. However, the data are generated by airlines that mostly operate in a

hub-spoke network. Nonetheless, to the extent that this network structure mostly affects

time-invariant market- and airline-specific operating costs, we can absorb this heterogeneity

by including market times airline fixed effects in our regressions. In this way, we absorb all

time invariant correlation among local markets for the same airline, making the set of local

market decisions for the same airline independent of each other.

Using the estimated model, we use the model solution to simulate data, generating 1,225

markets over 15 periods. We start by finding the steady-state distribution of the states using

the equilibrium choice probabilities and the transition probabilities for market size. The

initial state values for each market (smt,xmt) are subsequently randomly drawn from the

steady-state distribution of these variables. The entry–exit decision aimt is calculated for a

given state from the equilibrium choice probabilities. We simulate data conditioning on the

initial observed states for each individual market group. We do so because the sample of each

market group is small and therefore is initial-state dependent. We repeat the procedure 10

times to alleviate simulation bias following Michaelides and Ng (2000). We then aggregate

all simulated market-group data to form a large panel that is comparable to the actual data.

Finally, to obtain statistics that describe market structure, we average these simulated values

of aimt over the simulations and over the sample.

While this first approach is computationally efficient, it masks the substantial heterogeneity

across markets, as different markets vary in market size, entry costs, and airline-specific

operating costs. More importantly, different markets might differ in the equilibrium played.

Although it would be ideal to capture market heterogeneity by estimating the dynamic

game on an individual market level, in each of these markets, we only observe a sequence of

state-action profiles over 15 periods. Therefore, to address this issue, we divide markets into

120 groups of similar size, pooling data across 10 markets on average. We then estimate the
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dynamic game separately for each of the market subgroups. We cannot reject the null that

the data are aggregated at the level of these 120 market subgroups using the homogeneity

test proposed by Otsu, Pesendorfer, and Takahashi (2016), which assesses whether data from

distinct markets can be pooled. Details regarding the homogeneity test are in Appendix B.

We make two modifications to the estimation procedure described previously. First,

because the sample size becomes much smaller, the relative frequencies of entry and exit

calculated from the data are discrete in nature. To improve matching quality, we discretize

the conditional choice probabilities from the model based on the frequency of observed states.

The discretized conditional choice probabilities are then used in the econometric objective

function, whose goal is to minimize the distance between the model and data moments.

The second modification relates to the compensation-related moments. Even when we

use disaggregated profit and entry–exit data, the contract loadings are still identified by

aggregate compensation moments, as our data only provides compensation information at

the airline level. This feature of the estimation poses a problem because in the model, there

is a mechanical multiplicative effect of market size on compensation, so identical contract

loadings in different market sizes will affect the estimates of the profit-related parameters.

Moreover, the main purpose of the estimation at the market-level is to capture heterogeneity

in market-specific entry costs and firm–market specific fixed operating costs. Therefore, to

obtain cost estimates that are less contaminated by the contract loadings, we assign weights

to the compensation moments so that they decrease with the distance of market size from

the sample median. In doing so, we implicitly assume that the CEO compensation contract

at the aggregate level is formulated given the median market.

5. Results

5.1 Parameter Estimates

Table 3 presents the main parameter estimates from the pooled and disaggregated

estimation approaches. For the latter, we report the median estimate from our 120 estimations.
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In Panel A, we report the mean, serial correlation, and residual variance for the process

governing market size in equation (14). Of note is the much higher estimate of the process

variance for the pooled estimation. This result arises in the pooled estimation because the

process variance captures both time-series and cross-sectional variation in market size. In

contrast, for the disaggregated estimation, each estimation only captures time-series variation,

resulting in a lower variance estimate.

In Panel B, we report the estimates of the remaining model parameters, with standard

errors in parentheses. All of the parameter estimates are significantly different from zero,

with one exception: the point estimate of the sensitivity of profit to competition, γn, in the

case of the estimation using disaggregated data. Note that estimated loadings on peer firm

performance for CEO compensation, λp, are statistically significant for both estimations.

Note that the positive sign of these coefficients is consistent with RPE, as peer performance

enters CEO compensation negatively. This piece of evidence provides strong support for the

existence of RPE. Moreover, the economic magnitude of this implied use of RPE is large.

For example, the estimate from the pooled estimation, 3.42× 10−4, implies a reduction in

compensation of $342 after a one million dollar increase in the peer group’s net income.

This effect is almost twice as large as the effect implied from our reduced-form regression in

equation (17). It is also much larger than those reported in the literature. For example, using

data from 1974 to 1986, Gibbons and Murphy (1990) find that in a median-sized firm, for

each extra million dollars of shareholder wealth, CEO salary and bonus rise by less than $90.

For each extra million dollars of peer shareholder wealth, salary and bonus decrease by $30.

Using ExecuComp data from 1992 to 2005, Albuquerque (2009) finds that for the median

firm, total CEO compensation increases $255 for each million dollars of increased shareholder

wealth and decreases $138 for each million dollars of increased peer shareholder wealth.

The estimates of the RPE parameter, λp, are not identical to the reduced-form regression

coefficient, λ̂p. Intuitively, because we are matching the conditional choice probabilities and

the reduced-form regression coefficients jointly, the contract loadings also adjust to better

26

Electronic copy available at: https://ssrn.com/abstract=3287143



match the conditional choice probabilities

Next, our two estimation approaches give rise to similar profit margins. Using data

pooled across markets, we find the estimated average fixed cost is $258.29 thousand, ranging

from $217.62 thousand for Delta to $280.79 thousand for Southwest. The average estimate

represents 91.5% of model-implied variable profits for a monopolist in a market of median size.

Similarly, using data disaggregated across markets, the average fixed cost is $88.32 thousand,

ranging from $60.81 thousand for Delta to $124.40 thousand for United. The average estimate

represents 64.8% of model-implied variable profits for a monopolist in a market of median

size. These ratios are close to the statistics provided by the Air Transport Association of

America, which reports that average fixed operating costs amount to 71.2% of total operating

expenses and 67.2% of revenue in 1993–1998. These results are also comparable to those

reported in Aguirregabiria and Ho (2012), who find an estimate of 75% using the variable

profits attributable only to nonstop flights as the denominator. This high value for the ratio

between fixed costs and variable profits implies substantial economies of scale in the airline

industry. In addition, the rank of the estimated fixed costs among airlines is in line with

Ciliberto and Tamer (2009), who show that fixed operating costs are low for Delta and high

for United.

However, the estimation using disaggregated markets produces more reasonable fixed

operating cost parameter estimates that are in line with those from Aguirregabiria and Ho

(2012). Adjustments are necessary to compare our results and theirs for three reasons. First,

our market demand is derived directly from the 10% sample of the DB1B data. In contrast,

Aguirregabiria and Ho (2012) scale these numbers back to their original levels. Second, we

define a market as a trip between a pair of MSAs, while Aguirregabiria and Ho (2012) consider

city pairs. In the sample we consider, the median ratio of MSA population to city population

is about 2.5, and the average is about three. Third, our data, and therefore estimates, are at

an annual frequency, while theirs are at a quarterly frequency.

With these differences in mind, using data disaggregated by markets, we estimate the
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average fixed operating costs to be $88.32 thousand for MSA-pair market demand in the

10% sample, which corresponds to $353.30 (= 88.32/2.5× 10) thousand for city-pair market

demand scaled to the size of the full sample. Aguirregabiria and Ho (2012) estimate that the

average fixed operating cost is $119 thousand per quarter and therefore $476 (= 119 × 4)

thousand per year for a city-pair. Our cost parameter estimates are therefore remarkably

in line with the cost estimates in Aguirregabiria and Ho (2012). This result is encouraging

given that their estimation is based upon assumptions of a hub-and-spoke network and price

competition.

Moreover, using disaggregated data produces more sensible estimates of the entry cost,

which we find to be $1,289.15 thousand for a market of median size. The estimate from

the pooled estimation is approximately 10 times higher at $11,931.35 thousand, which is

46 times the average estimated fixed cost and 42 times variable profit for a monopolist in

a market of median size. The pooled estimation produces such a high entry cost because

market demand estimated with pooled data is quite volatile. To fit our data, which features

persistent incumbency status, a high entry cost is necessary to offset this extra variation in

market size.

The extremely high entry cost is the main reason for the compromised model fit for the

pooled estimation approach. As in Asplund and Nocke (2006), an increase in the entry cost

leads to a lower turnover. It also results in more markets with one and two incumbents because

it protects incumbents from intense competition under bad market conditions. Similarly, it

produces fewer markets with six or seven incumbents because it deters potential entrants

under good market conditions.

5.2 External Model Validation

Table 4 compares simulated and data values of the statistics that describe market structure

for two versions of the model estimation. “Pooled” corresponds to the estimation in which we

use data pooled across markets, and “Separate” corresponds to the estimation in which we
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use data disaggregated into separate markets. In the latter case, we report estimates from the

median market in terms of size. We examine three sets of statistics: the fraction of markets

with a given number of incumbents, the fraction of markets with a given number of new

entrants,po and the fraction of markets with a given number of new exits. Note that because

we are directly matching conditional choice probabilities and not these specific statistics, this

exercise constitutes an external model validity check.

The pooled estimation produces several close matches, but also some noticeable discrepan-

cies between data and model predictions. Specifically, the model over-predicts the proportion

of markets with one incumbent by 10.3 percentage points and under-predicts the proportion

of markets with six incumbents by 20.7 percentage points. Moreover, it under-predicts the

amount of market turnover for all markets with more than zero exits. In contrast, the

disaggregated estimation does a better job of matching the simulated with the real moments,

especially the tail market distribution by number of incumbents.

Several differences between the two estimation approaches underlie these results. First, as

seen in Table 3, estimating the market demand process with pooled data produces volatility

estimates that are higher compared to those obtained from disaggregated data. This result

stems from the pooled-data estimation capturing substantial cross-section variation, as the

procedure in Han and Phillips (2010) captures intercept heterogeneity but does not entirely

rid the error-term of cross-sectional heterogeneity. This overstated demand volatility in turn

distorts the rest of the model parameter estimates and compromises model fit. Second, the

pooled estimation approach omits heterogeneity in costs across markets, which arises because

airlines with hub-and-spoke networks naturally have lower operating costs in their hubs.

5.3 Counterfactuals

In this subsection, we use our estimated model to conduct counterfactual experiments to

quantify the effect of RPE on competition. All these comparisons can be contaminated by

multiplicity of equilibria, which are prevalent in dynamic games. Although we can identify the
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equilibrium observed in the data, we cannot guarantee that the same equilibrium is selected

and played in the counterfactual specification of the model. To deal with this problem, we use

an approach proposed in Aguirregabiria (2012) by requiring that the (unknown) equilibrium

selection function does not jump discontinuously between equilibria as we change the value

of the structural parameters continuously. That is, the counterfactual equilibrium is of the

same type as the equilibrium in the data.

5.3.1. Comparative Statics

First, we present comparative statics in Figure 2, which show how market competition

varies with four model parameters: the sensitivities of variable profits to demand and

competition, γn and γs, the entry cost, k, and the contract loading on the firm’s own

performance, λo. We characterize market competition by the number of active firms, which

is a common empirical measure of competition and is nearly identical to the Herfindahl-

Hirschman index in our model because all incumbents have the same market share. Our

intent is to observe how different features of the model affect optimal behavior under RPE.

Our comparative statics analysis is based on the same set of parameter estimates used to

construct Figure 3. We obtain each panel of Figure 2 by solving and simulating the model

21 times, each time corresponding to a specific value of the parameter under scrutiny. For

each of the simulations, we calculate the average of the total number of incumbents across

individual markets.

We first examine the two parameters that govern the sensitivities of variable profits to

demand and competition. The number of active players increases in γs but decreases in γn.

Intuitively, as γs increases, players gain higher variable profits for the same market demand

and therefore are more likely to be present in a market. Similarly, as γn increases, players

lose more variable profits for the same level of competition and therefore are less likely to be

operative in a market.

In the second row of Figure 2, we present comparatives statics with respect to the entry

cost, k, and the contract loading on the firm’s own performance, λo. As the entry cost rises,
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the number of active firms falls, except when the cost is small. Intuitively, as k rises, fewer

firms are efficient enough to overcome the entry cost. However, if a rise in k also deters that

of inefficient firms more than the entry of efficient firms, then at sufficiently low levels of k, a

rise in k encourages efficient firms to be active and raises the number of active players.

The relation between the number of firms and the contract loading on own performance,

λo, slopes upward. As λo rises, the relative importance of RPE falls, so all but the most

efficient firms are more likely to be active, as comparisons to their low-fixed-cost peers become

less important. Of course, this last comparative static needs to be interpreted with care, as,

outside this particular model, contract loadings are themselves an endogenous outcome. That

said, this comparative static is useful as a first step in designing optimal contracts as long as

one of the contracting goals depends on competition.

5.3.2. Policy Functions

Next, we compare the policy functions of the model as estimated with a counterfactual

policy function constructed by setting the contract loading on peer performance to zero.

First, we consider the parameters from the disaggregated estimation, and plot in Figure 3

equilibrium conditional probabilities of being active in a market as a function of the market

size, s. We calculate these probabilities at the steady-state distribution of market demand,

simt, so our calculations average over different incumbency statuses. We plot these numerical

policy functions for each major airline in our data. Panel A contains policy functions from

the baseline model with RPE, and Panel B contains policy functions from the counterfactual

model without RPE.

These policy functions highlight several aspects of the intuition that underlies the model

solution. First, two patterns are common to both Panels A and B of Figure 3. In both,

the equilibrium probability of being active rises sharply with market size when markets are

small. It then flattens and eventually falls as market size rises. This pattern stems from two

countervailing effects of size on firms’ profits. On the one hand, profits increase mechanically

in size. On the other hand, profits fall with size due to the presence of fixed costs combined
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with endogenously intensified competition. The first demand effect dominates for small

markets, while the second competition effect dominates for large markets.

The response to market size, however, differs across heterogeneous players depending

on their comparative cost advantage. First, firms with lower fixed operating costs, such as

Delta (DL) in dashed red, are always more likely to be active than their high-fixed-costs

counterparts such as US Airlines in dashed gold. Second, these hump-shaped policy functions

peak earlier for firms with high fixed costs. As a result, in the stationary equilibrium, efficient

players are relatively more likely to be present in large markets, while inefficient players are

relatively more concentrated in small markets, as in Asplund and Nocke (2006), who call this

result a selection effect. Although a rise in market size mechanically increases the variable

profits of all firms, it also leads to intensified competition because it promotes endogenous

entry. Thus, the marginal surviving firm has to be more efficient in larger markets.

The model dynamics amplify this selection effect because the participation decisions for

incumbents and potential entrants differ. When deciding to remain in operation, incumbents

compare the expected discounted future profits with their outside options after exit. In

contrast, potential entrants compare the discounted future payoff from entering with the

sunk entry cost. The irrelevance of the entry costs for incumbents also gives rise to hysteresis

in the structure of the market. The sunk entry cost restrains potential entrants from entering

and incentivizes incumbents to remain in operation rather than exit. The number of firms

thus responds asymmetrically to changes in demand or, equivalently, the history of market

structure. As such, in addition to current and future profit determinants, this history matters

for explaining the current number of firms in a market, as in Asplund and Nocke (2006).

While this discussion thus far highlights the similarity in the optimal policies with and

without RPE, Panels A and B in Figure 3 differ in several important dimensions. First, firms

with low fixed costs have nearly identical policy functions with and without RPE. Second,

the one difference in the policy functions of these efficient firms with and without RPE

occurs in large markets, where RPE is associated with a lower probability of being active.
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This pattern is a direct effect of RPE dampening the positive effect of large market size on

compensation, as market size is a common shock to all players in the market. Third, and

in contrast, firms with higher fixed costs are substantially less likely to be present in any

market, as it is optimal for them to avoid being compared to their low-cost peers. Fourth,

this drop in the probability of being active is sharper for medium and large markets than for

small markets. In equilibrium, the small markets contain fewer low-cost firms, as RPE has

less of an effect on the entry–exit decision of the high-cost firms. The effects are large. The

probability of being active falls from .67 without RPE to .27 with RPE for US Airways. The

result is that the selection effect (Asplund and Nocke 2006) becomes more pronounced, with

airlines of similar profitability clustering together.

Next, in Figure 4, we again plot the estimated policy functions and the counterfactual

policy functions without RPE, but we use the parameters from the pooled estimation. While,

as discussed above, these parameter estimates are likely contaminated by heterogeneity,

examining the policy functions under this parameterization is nonetheless instructive. These

plots differ markedly from their counterparts in Figure 3, with this difference due to two

specific parameters. The pooled estimation delivers a much smaller estimate of γn, which is

the parameter in equation (1) that governs the intensity of competition, with high γn implying

that new entrants siphon off a great deal of revenue from incumbents. This estimation also

delivers a much larger estimate of the fixed entry cost, k, which intuitively leads to less

intense competition.

Several features of Figure 4 stand out. First, the probability of being active rises sharply

with market size and then flattens out abruptly for medium and large markets. There is

no hump shape because a high entry cost implies that competition has a weak effect on

the probability of being active. Second, the policy functions are much more compressed

across firms with different levels of fixed costs. Intuitively, fixed operating costs matter less

for entry–exit decisions when variable profits are high and depend little on the number of

competitors in the market. Third, we see the same effect of RPE on policies as in Figure 3,
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with high-cost airlines less likely to be active to avoid comparisons with peers. However, the

effect is muted relative to that in Figure 3 because higher variable profits lower the dispersion

of profitability across players, so RPE has much less impact on the highest-cost firms.

5.3.3. Endogenous selection

For our final counterfactual exercise, in Figure 5, we plot the average endogenous fixed

costs of the firms operating in a market as a function of the market entry cost, both for the

estimated model with RPE and for a counterfactual model without RPE. Two patterns in

Figure 5 are of note. First, as in (Asplund and Nocke 2006), we see a selection effect even in

the absence of RPE, in which low-cost firms are more likely to operate in high-entry-cost

markets, and vice versa. Two opposing forces are at work. On the one hand, high fixed costs

directly make entry less attractive. On the other hand, high entry costs also lead to less

intense competition, which dampens the first direct effect. For inefficient firms with high costs,

the direct effect is more important, but for more efficient firms, the second effect outweighs

the first. Second, RPE naturally amplifies the competitive advantage of the low-fixed-cost

firms, so we see a steepening of the slope of the relation between average fixed costs and the

parameter governing entry costs.

6. Conclusion

In this paper, we investigate how and to what extent the use of RPE affects firms’ entry–

exit decisions and thus industry competition. We develop a dynamic game of competition

with heterogenous firms in an oligopoly market with the presence of RPE contracts, and we

estimate the model parameters using detailed airline route data from the U.S. airline industry,

combined with CEO compensation data. Using this framework, we obtain three main findings.

First, RPE encourages the sorting of inefficient firms into low-entry-cost markets and efficient

firms into high-entry-cost markets. Second, RPE discourages firms with high fixed operating

costs from participating in any market, but especially medium and large markets, with the

34

Electronic copy available at: https://ssrn.com/abstract=3287143



probability of being active in a market falling up to 40 percentage points. Because RPE has

little effect on the entry–exit decisions of efficient firms with low fixed operating costs, RPE

also encourages the sorting of inefficient firms into small markets, and vice versa. Finally, we

find that when markets are characterized by high entry costs or weak competition, RPE has

little effect on entry–exit decisions.

The model also provides insight into the economic rationale behind these findings. Because

RPE makes CEO compensation less sensitive to market conditions beyond their control,

managers, under RPE contracts, make entry–exit decisions while facing a tradeoff between

the lower sensitivity to market conditions and the gain or loss from being compared to

competing agents. We find that the second consideration, an unintended consequence of

RPE, is the dominant empirical force, with airline decisions dependent more on their relative

cost advantages than the sensitivity of profits to factors beyond their control.

One direction for future research is based on our assumption of modeling observed instead

of optimal contracts. We do not characterize an optimal contract, so the contract loadings

on firms’ own and peer performance are exogenous and fixed. While the rationale for this

choice is based on the natural assumption of an incomplete contracting environment, we

cannot ascertain whether the unintended effects on industry competition induced by the

use of RPE is optimal or whether carefully designed contracts could mitigate these effects.

However, this empirical strategy has the advantage of demonstrating the effects of RPE on

firm decisions that have not already been explored in the theoretical contracting literature. For

example, the simple and insightful models that explore the interaction between competition

and RPE (Aggarwal and Samwick 1999; Vrettos 2013, e.g.[) do not consider any effects of

relative cost advantages across competitors or heterogeneity in markets. Thus, our work

provides interesting results on the responses to contracting features that are of interest to

both economic theorists and compensation committees who set executive pay.
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Figure 1. Market Structure and Dynamics
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This figure presents the distribution of the 1,225 markets examined across the number of
incumbent airlines between 1993 and 2007.
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Figure 2. Comparative Statics

0.03 0.04 0.05 0.06 0.07 0.08

Profit sensitivity to demand, 
s

3

4

5

6

7

N
u
m

b
e
r 

o
f 
a
c
ti
v
e
 f
ir
m

s

0 5 10 15 20

Profit sensitivity to competition, 
n

3

4

5

6

7

N
u
m

b
e
r 

o
f 
a
c
ti
v
e
 f
ir
m

s

0 0.5 1 1.5 2 2.5

Entry cost, k (  103)

3.5

4

4.5

5

5.5

N
u
m

b
e
r 

o
f 
a
c
ti
v
e
 f
ir
m

s

1 2 3 4 5 6

Own performance 

contract loading, 
o
 (  10-3 )

3.5

4

4.5

5

5.5
N

u
m

b
e
r 

o
f 
a
c
ti
v
e
 f
ir
m

s

This figure depicts how market competition varies with the four parameters we estimate: the sensitivities of
variable profits to demand, γs, and competition γn, the entry cost, k, and the contract loading on firms’ own
performance, λo.
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Figure 3. Policy Functions with and without RPE: Disaggregated Estimation
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This figure depicts the equilibrium conditional probabilities for each airline as a function of market size, s,
evaluated at the steady-state distribution. Panel A contains policy functions from the model and Panel B
contains policy functions from a model with the same parameterization, except with the contract loading
on peer performance set to zero. Model parameter values are taken from the set of estimation results for
disaggregated markets in Table 3. The airlines considered are American (AA), Continental (CO), Delta (DL),
Northwest (NW), United (UA), US Airways (US) and Southwest (WN).
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Figure 4. Policy Functions with and without RPE: Pooled Estimation
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This figure depicts the equilibrium conditional probabilities for each airline as a function of market size, s,
evaluated at the steady-state distribution. Panel A contains policy functions from the model and Panel B
contains policy functions from a model with the same parameterization, except with the contract loading on
peer performance set to zero. Model parameter values are taken from the set of estimation results for pooled
markets in Table 3. The airlines considered are American (AA), Continental (CO), Delta (DL), Northwest
(NW), United (UA), US Airways (US) and Southwest (WN).
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Figure 5. Fixed Costs versus Entry Costs
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This figure depicts average fixed costs as a function of market entry costs, k, in the cases of RPE and no
RPE. Fixed costs are normalized to one for the median market.
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Table 1. Airlines by the Number of Passengers and Markets

This table presents the seven airlines in our sample, together with the annual number of
passengers and the number of operating markets served. The sample is based on the DB1B
database and covers the period from 1993 to 2008.

Code Airline Number of Number of

passengers markets

WN Southwest 2,445,857 637

AA American 2,107,029 1,064

UA United 1,971,053 1,059

DL Delta 1,843,527 1,119

US US Airways 1,472,839 1,116

CO Continental 1,282,698 1,139

NW Northwest 1,236,952 998
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Table 2. Market Structure and Dynamics

This table presents summary statistics regarding market structure and dynamics. The sample
is based on the DB1B database and covers the period from 1993 to 2008. Panel A presents
the distribution of market-year observations by the number of entries and exits, respectively.
Panel B presents statistics describing the differences of airline operations.

Panel A: Fraction of market-year observations with entries or exits

0 1 2 >=3

Entries 87.69% 11.27% 1.00% 0.04%

Exits 84.46% 13.66% 1.75% 0.14%

Panel B: Fraction of markets with entries or exits

0 1 2 >=3

Entries 82.19% 53.59% 30.42%

Exits 84.42% 65.13% 44.85%

Panel C: Heterogeneity across airlines

AA CO DL NW UA US WN

Monopoly markets

No. of

market-year

obs

40 34 195 46 41 259 77

Market % 6% 5% 28% 7% 6% 37% 11%

Probability of staying in a market

75% 68% 87% 80% 70% 75% 79%

45

Electronic copy available at: https://ssrn.com/abstract=3287143



Table 3. Parameter Estimates

The table reports the parameter estimates with their corresponding standard errors in
parentheses. Panel A reports the estimates of the AR(1) process governing market demand
dynamics, with µ, ρ, and σ representing the drift, serial correlation, and volatility. Panel
B reports the structural parameter estimates from the dynamic game. γs and γn capture
the impacts of demand and competition, respectively, on equilibrium industry revenues. f
stands for airline-specific fixed operating costs, and k is the market entry cost. λo and λp
are parameters representing the contract loadings on the airline’s own and peer performance,
respectively. We consider two versions of the model estimation: Pooled corresponds to the
results using data pooled across markets, and Disaggregated corresponds to the results using
data disaggregated across markets.

Panel A: Market demand dynamics

Pooled Disaggregated

µ 8.194 8.186

ρ 0.770 0.892

ω 0.475 0.190

Panel B: Structural parameter estimates

Pooled Disaggregated

Estimates Std. errors Estimates Std. errors

Variable profits

γs 0.078 (0.004) 0.038 (0.006)

γn 0.550 (1.064) 10.460 (7.756)

Fixed operating costs (in thousands)

f(AA) 259.988 (2.174) 76.864 (20.789)

f(CO) 267.392 (2.191) 72.535 (21.568)

f(DL) 217.618 (2.140) 60.811 (22.355)

f(NW) 247.721 (2.143) 74.729 (22.327)

f(UA) 258.273 (2.185) 91.640 (20.408)

f(US) 276.255 (2.220) 124.403 (24.073)

f(WN) 280.794 (2.228) 117.289 (21.981)

Entry cost (in thousands)

k 11,931.351 (0.634) 1,289.145 (43.804)

Compensation (×10−3)

λo 1.388 (0.001) 5.200 (0.056)

λp 0.342 (0.002) 0.325 (0.050)
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Table 4. Market Structure: Data- and Model-Predicted Statistics

This table compares simulated and actual statistics that describe market structure. We
consider two versions of the model estimation. The label “Pooled” corresponds to the
estimation in which we use pooled data across markets, and the label “Disaggregated”
corresponds to the estimation in which we use data disaggregated across markets.

Data Model

Pooled Disaggregated

Distribution of markets by number of incumbents

0 7.9% 6.7% 2.7%

1 3.6% 13.9% 6.1%

2 5.0% 13.7% 8.7%

3 7.1% 15.0% 11.4%

4 9.3% 14.7% 13.1%

5 17.5% 13.9% 16.8%

6 35.5% 14.8% 24.4%

7 14.1% 7.3% 16.8%

Distribution of markets by number of new entrants

0 87.7% 92.3% 83.3%

1 11.3% 5.6% 13.3%

2 1.0% 1.7% 2.7%

>= 3 0.0% 0.4% 0.8%

Distribution of markets by number of new exits

0 84.5% 93.4% 84.5%

1 13.7% 6.0% 11.2%

2 1.8% 0.6% 2.7%

>= 3 0.1% 0.0% 1.5%
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Appendix A. U.S. Airline Industry Description and Evolution

Appendix A.0.1. Entry and exit

The DB1B survey classifies information at the coupon, market, and tickets level separately.

The ticket data set contains summary characteristics for each itinerary, including reporting

carrier, origin/destination, and prorated airfare. The market data set contains ticket charac-

teristics disaggregated at the level of a single direction within the ticket. The coupon data

set contains the characteristics of each leg of the air tickets, such as the operating carrier,

origin and destination airports, number of passengers, and fare class.

We construct the airline entry and exit data following Ciliberto and Tamer (2009). We

start with a sample of data from the first quarter of 1993 to the last quarter of 2015. We

then take three steps to link all information in the DB1B survey. First, we merge the DB1B

coupon data set with operating carrier information from a separate data source: the T-100

Domestic Segment data set from the BTS, which reports all flights that occur in the United

States in a given month of the year. We then drop the unmatched coupons and merge this

reduced DB1B coupon data set with the DB1B ticket data set, using ticket identification

numbers. Finally, we merge the cleaned ticket-coupon data set with the DB1B market data

set to get the information on origin and destination airports.

Following Ciliberto and Tamer (2009), we drop observations with the following character-

istics: (i) tickets with more than six coupons; (ii) tickets whose fare credibility is questioned

by the Department of Transportation (the variable dollarcred with a value of zero); (iii)

tickets that are neither one-way nor round-trip travel; (iv) tickets including travel on more

than one airline on a unidirectional trip (know as interline tickets); (v) tickets with a fare less

than 20 dollars; (vi) tickets involving U.S. nonreporting carriers flying within North America

(small airlines serving big airlines) and foreign carriers flying between two U.S. points; (vii)

tickets that are part of international travel; (viii) tickets involving noncontiguous domestic

travel (Hawaii, Alaska, and territories); and (ix) tickets in the top and bottom fifth percentile

of the year-quarter fare distribution.

Appendix A.0.2. Markets

We define a market as a trip between a pair of MSAs, irrespective of intermediate stops

and of the direction of the flight. This definition is in line with the previous literature. For

example, Ciliberto and Tamer (2009) consider airport pairs and Aguirregabiria and Ho (2012)

consider city pairs. The sample includes markets between the top 50 MSAs ranked by average

population from the U.S. Census Bureau during the sample period. Table A.1 in Appendix

A presents the list of the 50 MSAs and their populations. Briefly, from 1993 to 2015, the
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top 50 MSAs cover on average 63.8% of the U.S. population. The markets between these

50 MSAs serve more than 66.61% of all passengers and generate more than 66.77% of all

revenues over all reported market segments in the DB1B data.

For each MSA, we cluster all the primary airports classified by the Federal Aviation

Administration, excluding any general aviation airports, which are civilian airports that

typically serve only small charter and private aircraft. This clustering implies perfect

substitution in demand and supply between two routes with the same MSAs but different

airports and cities. In the end, we have M = (50×49)/2 = 1, 225 possible markets. Table A.2

presents the top 20 markets ranked by the average annual number of passengers served.

Appendix A.0.3. Airline identification

A ticket can involve more than one airline because of code shares, with approximately

one third of the tickets in our sample involving more than one airline. We therefore use

the reporting carrier at the ticket level in the DB1B data to identify the airline, where the

reporting carrier is the airline that submits the ticket information to the Office of Airline

Information. This convention implies that we assume that the reporting carrier pays the cost

of operating the flight and receives the revenue for providing this service.

Next, we restrict our attention to the top airlines ranked by the annual number of

passengers served for two reasons. First, we need comparable peers. Second, the state

space grows exponentially with the number of airlines, as N airlines implies 2N possible

combinations of choice sets. To avoid the clear computational burden, we combine any

regional affiliates with their holding parent airlines, and we drop the regional carriers whose

core business is not in cooperation with a major carrier. This process leaves us with seven

airlines in the final sample. Table 1 in Appendix A presents these carriers, together with

the annual number of passengers and the number of operating markets. Southwest is the

airline that flies the most passengers (about 2.5 million passengers in the 10% sample), while

American, United, and Delta follow in the ranking. These 7 carriers in total serve 80.49% of

passengers and generate 82.14% of revenues in the markets between top 50 MSAs during the

1993–2008 time period.

Appendix A.0.4. Mergers, acquisitions, and code-share agreements

The U.S. airline industry has experienced substantial consolidation over the past few

decades. Table A.3 in Appendix A describes the recent airline mergers and code-share

agreements in the U.S. airline industry.

Mergers and acquisitions (M&As) can be considered as extreme cases of entry–exit

decisions. However, we do not explicitly model the M&A decisions in our dynamic model

for two reasons. Theoretically, M&A decisions are sufficiently rare that the expectation of
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future mergers does not influence equilibrium play. Empirically, M&As in the U.S. airline

industry are heavily regulated. In the wake of the Airline Deregulation Act of 1978 and

the closure of the Civil Aeronautics Board in 1985, policy makers adopted a strong stance

against excessive concentration. Therefore, mergers between airlines on the verge of collapse

were approved to maintain competition, while mergers between fiscally healthy airlines were

generally prevented.

Nevertheless, the mergers and acquisitions have important implications for the estimation

of our dynamic game because they change the number of global players. Therefore, instead

of modeling the mergers and acquisitions explicitly, we take into account industry evolution

by estimating our dynamic game for the sample period 1993–2008. In this period, the global

players are Southwest, American, Delta, United, US Airways, Northwest, and Continental.

One final important feature of the airline data is code-share agreements, which allow an

airline to sell seats on a partner’s plane as if they were its own. This practice could potentially

affect our estimation, depending on whether the code-shared routes are complementary or

overlapping. On the one hand, routes are complementary when together they allow travel

between two cities that is not possible on either airline. A code-share agreement effectively

enables the two airlines to enter a market jointly. The use of the reporting carrier takes care of

these cases. On the other hand, routes are overlapping when both airlines offered competing

service in the same market prior to the code-share alliance. In these instances, an alliance could

facilitate price collusion, which violates the model assumption of a negative relation between

the number of incumbents and profits. Nevertheless, we view the concern over price collusion

as minimal for several reasons. First, from a practical perspective, code-share agreements

are subject to careful review by the U.S. Department of Transportation, which ensures that

the agreements are not anticompetitive or contrary to the public interest. Second, from an

academic perspective, Gayle (2007) uses a structural framework to examine the competitive

effects of the code-share alliances among Continental, Delta, and Northwest in 2002, finding

few significant departures between collusive and prealliance prices. Finally, strategic alliances

formed by code-sharing can have an impact on deterring potential competitors from entering

a relevant market. In our model, this entry deterrent effect is captured by the market-specific

entry costs.
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Table A.1. MSA and Population

This table presents the list of the top 50 metropolitan statistical areas (MSAs), ranked by
average annual population between 1993 and 2008 from the U.S. Census Bureau.

CBSA MSA, State Population

35620 New York-Newark-Jersey City, NY-NJ 18,306,651

31080 Los Angeles-Long Beach-Anaheim, CA 11,751,734

16980 Chicago-Naperville-Elgin, IL-IN-WI 9,004,264

14460 Boston-Cambridge-Newton, MA-NH 6,175,536

37980 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 5,680,094

19100 Dallas-Fort Worth-Arlington, TX 5,195,236

33100 Miami-Fort Lauderdale-West Palm Beach, FL 4,975,916

47900 Washington-Arlington-Alexandria, DC-VA-MD-WV 4,842,885

26420 Houston-The Woodlands-Sugar Land, TX 4,789,770

19820 Detroit-Warren-Dearborn, MI 4,456,654

12060 Atlanta-Sandy Springs-Roswell, GA 4,263,447

41860 San Francisco-Oakland-Hayward, CA 4,057,384

40140 Riverside-San Bernardino-Ontario, CA 3,409,758

38060 Phoenix-Mesa-Scottsdale, AZ 3,317,283

42660 Seattle-Tacoma-Bellevue, WA 3,029,570

33460 Minneapolis-St. Paul-Bloomington, MN-WI 2,957,210

41740 San Diego-Carlsbad, CA 2,825,013

41180 St. Louis, MO-IL 2,668,021

12580 Baltimore-Columbia-Towson, MD 2,557,779

45300 Tampa-St. Petersburg-Clearwater, FL 2,413,157

38300 Pittsburgh, PA 2,380,470

39300 Providence-Warwick, RI-MA 2,164,859

19740 Denver-Aurora-Lakewood, CO 2,130,799

17460 Cleveland-Elyria, OH 2,125,131

17140 Cincinnati, OH-KY-IN 2,014,202

38900 Portland-Vancouver-Hillsboro, OR-WA 1,926,834

40900 Sacramento–Roseville–Arden-Arcade, CA 1,840,168

28140 Kansas City, MO-KS 1,832,935

41700 San Antonio-New Braunfels, TX 1,694,097

41940 San Jose-Sunnyvale-Santa Clara, CA 1,681,379
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Table A.1. (Continued) MSA and Population

CBSA MSA, State Population

36740 Orlando-Kissimmee-Sanford, FL 1,677,544

25540 Hartford-West Hartford-East Hartford, CT 1,612,177

47260 Virginia Beach-Norfolk-Newport News, VA-NC 1,595,074

18140 Columbus, OH 1,587,790

26900 Indianapolis-Carmel-Anderson, IN 1,565,532

33340 Milwaukee-Waukesha-West Allis, WI 1,499,327

16740 Charlotte-Concord-Gastonia, NC-SC 1,420,926

29820 Las Vegas-Henderson-Paradise, NV 1,382,835

34980 Nashville-Davidson-Murfreesboro-Franklin, TN 1,289,531

35380 New Orleans-Metairie, LA 1,268,270

12420 Austin-Round Rock, TX 1,264,960

14860 Bridgeport-Stamford-Norwalk, CT 1,228,752

32820 Memphis, TN-MS-AR 1,173,752

35300 New Haven-Milford, CT 1,165,669

15380 Buffalo-Cheektowaga-Niagara Falls, NY 1,156,330

27260 Jacksonville, FL 1,128,611

31140 Louisville/Jefferson County, KY-IN 1,109,337

49340 Worcester, MA-CT 1,096,765

36420 Oklahoma City, OK 1,065,238

40060 Richmond, VA 1,060,857
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Table A.2. Market and Number of Passengers in DB1B

This table presents the top 20 markets ranked by the average annual number of passengers
served. The sample is based on DB1B and covers the period from 1993 to 2008.

MSA Pair Passengers

1 Los Angeles-Long Beach-Anaheim,

CA

San Francisco-Oakland-Hayward,

CA

209,215

2 Chicago-Naperville-Elgin,

IL-IN-WI

New York-Newark-Jersey City,

NY-NJ-PA

196,532

3 Boston-Cambridge-Newton,

MA-NH

New York-Newark-Jersey City,

NY-NJ-PA

153,296

4 New York-Newark-Jersey City,

NY-NJ-PA

Orlando-Kissimmee-Sanford, FL 152,015

5 Atlanta-Sandy Springs-Roswell,

GA

New York-Newark-Jersey City,

NY-NJ-PA

143,795

6 Los Angeles-Long Beach-Anaheim,

CA

New York-Newark-Jersey City,

NY-NJ-PA

142,341

7 New York-Newark-Jersey City,

NY-NJ-PA

Washington-Arlington-Alexandria,

DC-VA-MD-WV

125,781

8 Miami-Fort Lauderdale-West Palm

Beach, FL

New York-Newark-Jersey City,

NY-NJ-PA

113,117

9 New York-Newark-Jersey City,

NY-NJ-PA

San Francisco-Oakland-Hayward,

CA

95,598

10 Dallas-Fort Worth-Arlington, TX Houston-The Woodlands-Sugar

Land, TX

92,642

11 San Diego-Carlsbad, CA San Francisco-Oakland-Hayward,

CA

85,216

12 Chicago-Naperville-Elgin,

IL-IN-WI

Los Angeles-Long Beach-Anaheim,

CA

84,643

13 Boston-Cambridge-Newton,

MA-NH

Washington-Arlington-Alexandria,

DC-VA-MD-WV

80,666

14 New York-Newark-Jersey City,

NY-NJ-PA

Tampa-St. Petersburg-Clearwater,

FL

77,839

15 Las Vegas-Henderson-Paradise, NV Los Angeles-Long Beach-Anaheim,

CA

76,098
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Table A.2. (Continued) Market and Number of Passengers in DB1B

MSA Pair Passengers

16 Chicago-Naperville-Elgin,

IL-IN-WI

Minneapolis-St. Paul-

Bloomington, MN-WI

74,020

17 Chicago-Naperville-Elgin,

IL-IN-WI

Washington-Arlington-

Alexandria,

DC-VA-MD-WV

72,702

18 Atlanta-Sandy Springs-Roswell,

GA

Chicago-Naperville-Elgin,

IL-IN-WI

71,288

19 Dallas-Fort Worth-Arlington, TX New York-Newark-Jersey City,

NY-NJ-PA

70,436

20 Las Vegas-Henderson-Paradise,

NV

San Francisco-Oakland-Hayward,

CA

68,181
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Table A.3. U.S. Airline Mergers, Acquisitions, and Code-Share Agreements

Panel A: Mergers and Acquisitions

1993 Southwest (WN) acquires Morris Air

1997 ValuJet merges with AirWays Corp. and becomes AirTran (FL)

1999 American (AA) acquires Reno Airways (QX)

2001 American (AA) acquires Trans World Airlines

2005 US Airways (US) merges with America West (HP)

2008 Delta (DL) merges with Northwest (NW)

2010 United (UA) merges with Continental (CO)

2011 Southwest (WN) merges with AirTran (FL)

2013 American (AA) merges with US Airways (US)

Panel B: Code-Share Agreements

1998 American (AA) and Alaska (AS)

1998 Northwest (NW) and Continental (CO)

1999 Continental (CO) and Alaska (AS)

1999 Northwest (NW) and Alaska (AS)

2003 United (UA) and US Airways (US)

2003 Northwest (NW), Continental (CO), and Delta (DL)

2005 Delta (DL) and Alaska (AS)

Source: Mountford (2003), Ito and Lee (2007), Mills (2010)
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Appendix B. Test of Pooling Data across Markets

In this section, we give a brief outline of the homogeneity test for assessing whether data

from distinct markets can be pooled. The test draws from Otsu et al. (2016) and is adapted

to our setting.

The test directly compares the set of conditional choice probabilities estimated from the

pooled sample with those estimated from individual markets. It builds on the idea that under

the null hypothesis, two conditions hold: the observed state-action profiles are generated

from an identical data-generating process and the same equilibrium was played in all markets.

This null hypothesis is a maintained assumption for estimation based on pooled data.

The test statistic is defined as

T =
M∑
j=1

∑
d∈D

Wj(d) [p̂j(d)− p̂(d)]2 ,

where for each state-action profile, d = (a | x, s), p̂j(d) and p̂(d) denote the conditional choice

probabilities for a market j and pooled markets respectively. Wj(d) is a weight that is given

by:

Wj(d) = fj(x, s)/p̂(d),

where fj(x, s) denotes the frequency of state (x, s) in market j. The test statistic has an

asymptotic chi-squared distribution.

We obtain the critical values of the test statistic by bootstrapping, where we consider

1,000 bootstrap iterations. For each iteration, b, we first simulate the game of the same

size as the original and then compute the bootstrap counterpart of the test statistic Tb.
The data-generating process used in the simulation is characterized by the state transition

probabilities from the pooled sample.
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Appendix C. Weight Matrix

We use a block diagonal weight matrix, with the first block corresponding to the regression

coefficients from equation (17). For these moments, we use a simple identity matrix. The

second block is the weight matrix for the state-specific entry probabilities, which is a diagonal

matrix with elements equal to the data frequency for each state. This choice implies that

we assign the most weight to the state-specific entry probabilities that are observed most

frequently. Note that the compensation moments are small in magnitude compared to the

state-specific entry probabilities. As such, a simple combination of the two weight matrices

implicitly undermines the importance of the compensation moments. To compensate, we

therefore multiply the identity weight matrix of the compensation regression coefficients by

the total number of observations.

The construction of the second block requires justification. In contrast to most of the

simulated method of moments estimators applied in finance (e.g. Bazdresch, Kahn, and

Whited 2018), in which the data moments are derived using the total number of observations

in the sample, each of the state-specific entry probabilities is calculated using a subset of

observations that depends on how often a state occurs. Because the number of observations

per state can be as small as two or three, small-sample bias can contaminate estimation of

the data moments, so we opt to use the state frequencies to construct the weight matrix as

in Pakes, Ostrovsky, and Berry (2007). They show that, for small sample sizes, estimation

requiring no calculation of the optimal weight matrix has a lower mean squared error than

estimation based on the optimal weight matrix. When we calculate the standard errors, we

use the moment covariance matrix, as the variation of the conditional entry probabilities is

dwarfed by the variation in the state frequencies.
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Appendix D. Narrative Evidence for the Use of Relative Perfor-

mance Evaluation

Below are excerpts from the proxy disclosures and newspaper articles for the use of relative

performance evaluation (under construction).

Continental In its 1999 proxy statement, Continental states:

The Committee believes that appropriate base salaries must be coupled with

incentive compensation that not only attracts and retains qualified employees, but

rewards them for increased performance. Compensation linked to the performance

of the Company’s common stock is one of the best incentives to align employees’

interests with those of stockholders and to enhance performance. In addition,

through the Incentive Plan 2000 proposed for stockholder approval in this proxy

statement, the Committee has sought to define performance criteria

relative to the Company’s competitors, mitigate the dilutive effect of relying

solely on common stock-based awards as incentive compensation, and develop

programs designed to retain management in the face of significant employment

opportunities from other companies.

As discussed elsewhere in this proxy statement, the Committee recommended

and the Board adopted the Company’s Incentive Plan 2000, providing for the

award of cash and stock-based incentives, including long-term incentive awards, to

non-employee directors, officers and key employees. The plan is designed to align

participants’ interests with those of stockholders and to reduce the Company’s

historic dependence solely on stock options to achieve its goal of attracting, retain-

ing and incentivizing qualified personnel. The Committee has adopted, subject to

stockholder approval of the Incentive Plan 2000, three incentive programs under

the Incentive Plan 2000. The first program, the Executive Bonus Performance

Award Program, is similar to (and will replace) the Company’s recently terminated

executive bonus program, but also provides an alternate target for bonus payments

of achievement of number 1, 2 or 3 in EBITDAR margin ranking by the Company

as compared to an industry group, together with an operating income hurdle. The

second program, the Long Term Incentive Performance Award Program (“LTIP”),

provides for cash incentive payments determined by the Company’s achievement

over multi-year performance periods of targeted EBITDAR margin rankings com-

pared with an industry group, together with an operating income hurdle. [emphasis

added] If the Incentive Plan 2000 is approved by stockholders, the Committee
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anticipates reducing the size of future annual option grants by approximately

one-half to executives who participate in the LTIP. The third program, the Officer

Retention and Incentive Award Program (“Retention Program”), is designed

to retain executives in light of significant employment opportunities for such

executives in other businesses, including the e-commerce and internet industries,

and to incentivize the Company’s executives to grow the value of the Company’s

investments in e-commerce and internet businesses, including distribution and

marketing channels for the Company. This program permits executives to receive

a cash payment measured by a portion of the gain and profits associated with the

Company’s investments in e-commerce or internet businesses. The Committee

believes that the Retention Program will act as a powerful retention tool for

Company management, and will benefit the Company from the direct incentive

to foster investment in and growth of e-commerce and internet businesses.

In its 2006 proxy statement, Continental states

Relative performance targets validate the absolute performance targets by

indicating whether the company’s goals are sufficiently aggressive in comparison

to the industry. Relative performance targets also provide flexibility to deal

with unforeseen events and industry-wide challenges. In such circumstances, the

company could fail to achieve its absolute performance targets, but the relative

performance measures will reward management that is able to outperform its

peer group in the face of such adversity.

Delta In its 1999 proxy statement, Delta states:

Early in fiscal 1999, the Committee approved a compensation formula for

Executive Vice Presidents and above to determine the annual incentive awards for

those officers whose compensation may be subject to the deductibility limitations

of Section 162(m) of the Internal Revenue Code. Awards for these officers, and

for other participants in the plan, are based on the Company’s achieving specific

financial goals (net income and return on investment), as well as effectiveness and

efficiency goals (safety, reliability, customer satisfaction, revenue per available seat

mile, and non-fuel costs per available seat mile). All financial, effectiveness and

efficiency goals were established in light of Delta’s fiscal 1998 performance, its fiscal

1999 business plan and the performance of Delta’s peer airlines. [emphasis added]

The awards also are based on key initiative goals related to Delta’s strategic

objectives (for example, the implementation of strategies related to business
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structure, airport master plans, technology and human resources, including labor

relations and employee morale). The Chief Executive Officer and the Chief

Operating Officer are measured solely on overall corporate results. All other

participants are measured based on the achievement of individual performance

goals as well as the overall corporate results.

The potential value of long-term incentive opportunities comprises the largest

portion (60% or more) of the targeted total compensation package for executive

officers. The Committee believes this approach to total compensation opportuni-

ties provides the appropriate focus for those executives who are charged with the

greatest responsibility for managing the Company and achieving success for all

of Delta’s stakeholders. The performance-based restricted stock program provides

rewards based on Delta’s financial and operational performance relative to peer

domestic airlines over three-year performance cycles. As with stock options, for-

mula awards may be adjusted based on the factors listed above. At the end of each

three-year performance cycle (the first cycle ends on June 30, 2001), participants

may earn nothing, or a number of shares ranging from 40% to a maximum of

200% of the target award. Performance goals measured include Delta’s ranking

relative to its peer domestic airlines with respect to total shareholder return and

three key U.S. Department of Transportation measures related to operations and

customer satisfaction. [emphasis added]

American Airlines In their 2008 proxy statement, American Airlines states

Annual Incentive Plan. As part of the Turnaround Plan, we established the

Annual Incentive Plan (the “AIP”) to link the interests of our stockholders, cus-

tomers and employees. All U.S.-based employees, including the named executive

officers, participate in the AIP, which provides cash incentive payments upon the

achievement of monthly customer service and annual financial goals.

Awards are earned under the customer service component of the AIP if we

achieve at least one of two customer service targets relative to our competitors:

• A top six performance for on-time arrival, as determined by the U.S. Depart-

ment of Transportation; or

• A top six performance for customer satisfaction, as determined by Survey

America, an independent organization.

American Airlines grants long-term equity compensation to the named executive officers in

approximately the following proportions: 70% in performance shares; 20% in stock options
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and/or SSARs; and 10% in deferred shares. Performance shares are grants of stock-based

compensation that vest after the completion of a three-year measurement period. Performance

goals measured are centered around American’s ranking relative to its peer domestic airlines

with respect to total shareholder return. The designated competitors for the total shareholder

return component are AirTran Airways, Alaska Airlines, Continental Airlines, JetBlue

Airways, Southwest Airlines and US Airways. The company did not include Delta Air Lines,

Northwest Airlines or United Airlines as competing airlines since their stock was not listed

on a national stock exchange at the inception of the 2006/2008 Performance Share Plan due

to their then-pending bankruptcy proceedings.

Northwest Starting from 1994, Northwest Airlines explicitly outlines that performance

goals may be based for performance-based awards. Such Performance-Based Awards are

based upon one or more of the following factors: stock price, market share, earnings per

share, return on equity, costs, operating margins, revenue or sales, pre-tax income, cash flow,

net income, return on assets as well as other financial goals. These criteria may be applied

on an absolute basis and/or be relative to one or more peer group companies or indices.

United United Airlines does not mention anything about the use of relative performance

evaluation in its 2007 10-K or DEF 14A reports. Yet the description of the CEO compensation

contract contained in these reports is not necessarily representative. As the report states, ”At

various times after the Company’s emergence from bankruptcy protection in February 2006,

the Company determined that it would be advisable to make changes to the compensation

programs for senior executives that were in place during the reorganization process.”

Since 2011, United has made explicit its use of RPE in its proxy statements. In the 2011,

proxy statements, it states:

Approximately 93% of the CEO’s 2013 total targeted pay was tied to Company

performance, with long-term incentives representing the single largest component

(82%). The long-term incentive opportunity contains three awards, each of which

has a three-year performance or vesting period. This design was put in place for

2011 awards following the Merger and has continued.

As part of the long-term incentives, the Long-Term Relative Performance

Awards (LTRP) measure and reward performance based on the Company’s

cumulative pre-tax margin over a three-year performance period as compared

with an industry peer group (American Airlines Group, Inc., Delta Air Lines Inc.,

Southwest Airlines Co., JetBlue Airways Corporation, and Alaska Air Group,

Inc.).

Performance is generally measured as (A) the Company’s pre-tax income over
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the performance period divided by its revenue over such period as compared to

(B) the peer companies’ aggregate pre-tax income over the performance period

divided by the peer companies’ aggregate revenue over such period.

The target performance level established for the 2013 LTRP awards was set by

the Compensation Committee so that executives would earn market-competitive

rewards (”target” level) for achieving a pre-tax margin performance level (equal

to the peer group average) that was designed to be achievable with strong

performance through the performance period. The entry performance level was

designed to be achievable with solid performance (peer group average pre-tax

margin minus 60 basis points), while the stretch performance level (peer group

average pre-tax margin plus 80 basis points) was set at a high level requiring

exceptional performance. In determining the performance goals, the Committee

considered the historic performance of the Company and the peer group and the

economic and market conditions at the time the goals were established.

US Airways US Airways grants long-term incentives under the 2005 Performance-Based

Award Plan. According to this performance plan, the participating key executives receive

cash and/or stock awards depending on its relative total stockholder return ranking against

a pre-defined competitive peer group. The current competitive peer group used for purposes

of the Performance Plan consists of AirTran, Alaska, American, ATA Holdings, Continental,

Delta, Frontier, Hawaiian, JetBlue, Midwest Express, Northwest, Southwest and United. The

performance cycles are the usual three-year periods beginning each January 1.
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